Abstract

We report a capacitance tracking method for achieving arbitrary polarization rotation from nematic liquid crystals. By locking to the unique capacitance associated with the molecular orientation, any polarization rotation can be achieved with improved accuracy over a wide temperature range. A modified relaxation oscillator circuit that can simultaneously determine the capacitance and drive the rotator is presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical steering of mutual capacitance in a nematic liquid crystal cell

Filip A. Sala and Marzena M. Sala-Tefelska
J. Opt. Soc. Am. B 35(1) 133-139 (2018)

Digital Pulse Integrator for Flash Intensity Measurements*

Henry H. Kramer and Edward J. Bair
J. Opt. Soc. Am. 50(6) 607-610 (1960)

Diode laser frequency locking using Zeeman effect and feedback in temperature

Weliton Soares Martins, Mayara Grilo, Manoel Brasileiro, Orlando di Lorenzo, Marcos Oriá, and Martine Chevrollier
Appl. Opt. 49(5) 871-874 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
    [Crossref]
  2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007), Chap. 20.3.
  3. C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal as a sensing element,” Sensors 12, 3204–3214 (2012).
    [Crossref]
  4. “Liquid Crystal Variable Retarder,” http://www.meadowlark.com/liquid-crystal-variable-retarder-p-94?mid=2#.WQhWZFfe_dk , May (2016).
  5. Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
    [Crossref]
  6. M. R. Costa, R. A. C. Altafim, and A. P. Mammana, “Electrical modeling of liquid crystal displays-LCDs,” IEEE Trans. Dielec. Electr. Insulat. 13, 204–210 (2006).
    [Crossref]
  7. P. Terrier, J. M. Charbois, and V. Devlaminck, “Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders,” Appl. Opt. 49, 4278–4283 (2010).
    [Crossref] [PubMed]
  8. “Liquid Crystal Selection Guide,” http://www.meadowlark.com/images/files/selection_guide_liquid_crystal.pdf
  9. “Datasheet AD5292,” http://www.analog.com/media/en/technical-documentation/data-sheets/AD5291_5292.pdf
  10. J. Li, S. Gauza, and S.T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
    [Crossref]
  11. L. Rao, S. Gauza, and S.T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett. 94(7), 071112 (2009).
    [Crossref]

2016 (1)

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

2012 (1)

C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal as a sensing element,” Sensors 12, 3204–3214 (2012).
[Crossref]

2010 (1)

2009 (1)

L. Rao, S. Gauza, and S.T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett. 94(7), 071112 (2009).
[Crossref]

2006 (1)

M. R. Costa, R. A. C. Altafim, and A. P. Mammana, “Electrical modeling of liquid crystal displays-LCDs,” IEEE Trans. Dielec. Electr. Insulat. 13, 204–210 (2006).
[Crossref]

2004 (1)

J. Li, S. Gauza, and S.T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

1995 (1)

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
[Crossref]

Altafim, R. A. C.

M. R. Costa, R. A. C. Altafim, and A. P. Mammana, “Electrical modeling of liquid crystal displays-LCDs,” IEEE Trans. Dielec. Electr. Insulat. 13, 204–210 (2006).
[Crossref]

Chandrasekara, R.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Charbois, J. M.

Cheng, C.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Costa, M. R.

M. R. Costa, R. A. C. Altafim, and A. P. Mammana, “Electrical modeling of liquid crystal displays-LCDs,” IEEE Trans. Dielec. Electr. Insulat. 13, 204–210 (2006).
[Crossref]

Devlaminck, V.

Gauza, S.

L. Rao, S. Gauza, and S.T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett. 94(7), 071112 (2009).
[Crossref]

J. Li, S. Gauza, and S.T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Hiang, G. C.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Li, J.

J. Li, S. Gauza, and S.T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Ling, A.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Mammana, A. P.

M. R. Costa, R. A. C. Altafim, and A. P. Mammana, “Electrical modeling of liquid crystal displays-LCDs,” IEEE Trans. Dielec. Electr. Insulat. 13, 204–210 (2006).
[Crossref]

Marcos, C.

C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal as a sensing element,” Sensors 12, 3204–3214 (2012).
[Crossref]

Oi, D.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Pena, J. M. S.

C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal as a sensing element,” Sensors 12, 3204–3214 (2012).
[Crossref]

Rao, L.

L. Rao, S. Gauza, and S.T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett. 94(7), 071112 (2009).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007), Chap. 20.3.

Santos, J. I.

C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal as a sensing element,” Sensors 12, 3204–3214 (2012).
[Crossref]

Sha, L.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Tan, Y. C.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Tang, Z.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007), Chap. 20.3.

Terrier, P.

Torres, J. C.

C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal as a sensing element,” Sensors 12, 3204–3214 (2012).
[Crossref]

Wu, S.T.

L. Rao, S. Gauza, and S.T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett. 94(7), 071112 (2009).
[Crossref]

J. Li, S. Gauza, and S.T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Ye, C.

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Rao, S. Gauza, and S.T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett. 94(7), 071112 (2009).
[Crossref]

IEEE Trans. Dielec. Electr. Insulat. (1)

M. R. Costa, R. A. C. Altafim, and A. P. Mammana, “Electrical modeling of liquid crystal displays-LCDs,” IEEE Trans. Dielec. Electr. Insulat. 13, 204–210 (2006).
[Crossref]

J. Appl. Phys. (1)

J. Li, S. Gauza, and S.T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Opt. Eng. (1)

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
[Crossref]

Phys. Rev. Applied (1)

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons onboard a nanosatellite,” Phys. Rev. Applied 5, 054022 (2016).
[Crossref]

Sensors (1)

C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal as a sensing element,” Sensors 12, 3204–3214 (2012).
[Crossref]

Other (4)

“Liquid Crystal Variable Retarder,” http://www.meadowlark.com/liquid-crystal-variable-retarder-p-94?mid=2#.WQhWZFfe_dk , May (2016).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007), Chap. 20.3.

“Liquid Crystal Selection Guide,” http://www.meadowlark.com/images/files/selection_guide_liquid_crystal.pdf

“Datasheet AD5292,” http://www.analog.com/media/en/technical-documentation/data-sheets/AD5291_5292.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Polarisation rotation achieved by a typical LCPR for different applied voltages at two different temperature settings. The necessary voltage to achieve a rotation of π at 296 K is approximately 3 V, but this voltage only achieves a rotation of 0.9π at 285.2 K, resulting in a fractional error of 10% (δ = 0.1π). As is commonly observed for most LCPRs, there is a threshold voltage (approximately at 1.5 V in this case) before polarization rotation is observed. There is a non-zero rotation below the threshold voltage due to residual mismatch between the axis of the liquid crystal cell and external waveplates.
Fig. 2
Fig. 2 The observed capacitance for a liquid crystal polarization rotator (LCPR) over 1.2π rad of rotation at 295.4 K. The physical dimensions of the LCPR is measured at a clear aperture of 5 × 5mm and a thickness of 1.5 mm including the two glass plates which confine the liquid crystals. This capacitance curve is constant, within measurement error, when the temperature is between 283 K to 301 K and can be used to achieve temperature free polarisation rotation. The temperature range above corresponds to the typical temperature experienced by our polarization instruments onboard small satellites [5].
Fig. 3
Fig. 3 (a) The R-C oscillator circuit with its capacitor replaced by a LCPR. The capacitance of the LCPR (Clc) can be inferred by monitoring fo. (b) The polarization rotation achieved by the LCPR when driven with a square wave (orange) and the R-C oscillator’s charging-discharging wave (black) at 295 K.
Fig. 4
Fig. 4 The optical setup used to measure the achieved polarisation rotation angle with the LCPR. A collimated laser beam (at 850 nm) coupled to a single mode fiber (SMF) is transmitted through the LCPR sandwiched between crossed polarisers (Pol.1 and Pol.2). A photodiode (PD) monitors the optical power transmitted for different rotation angles. The temperature of the LCPR is adjusted using a thermoelectric cooler (TEC). A Programmable-System-on-Chip (PSoC3) was used to drive the electronics, and to perform data acquisition.
Fig. 5
Fig. 5 Comparison of LCPR rotation achieved with (red data points) and without (black data points) capacitance tracking, over a range of temperature. Accurate temperature-free operation can be achieved in the range from 283 K to 301 K. The uncertainty plotted for each locked rotation angle is obtained by propagating the ±0.5 Least Significant Bit (LSB) error associated with the analogue-to-digital converter used to sample the photodiode voltage. It is interesting to observe that for intended rotation angle of 1.5π rad the achieved rotation angle is systematically lower and this is attributed to the fast axis orientation dependence on driving voltage [7].

Tables (1)

Tables Icon

Table 1 Column 1 & 2 show the reference capacitances and the intended rotation angles derived from Fig. 2 respectively. Column 3 shows the maximum error (at 283 K) in rotation angle without any temperature compensation. Column 4 tabulates the maximum rotation angle error when locked to the corresponding reference capacitance over the temperature range of 283 K to 301 K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f o = 1 2 R C l c l n ( 2 R b + R f R f ) ,

Metrics