Abstract

The imaging spectrometer generally shows geometrical asymmetric distortions known as the keystone and smile that are different from the regular imaging optical system. The conventional method of measuring such distortions requires a precision movement control stage and specialized optical setup. Moreover, it is even harder to measure other characteristics such as the wave front error (WFE) simultaneously and to repeat the measurements since an accumulated vast number of statistical data is required to calculate the keystone and smile. To overcome these disadvantages, a new and simple method is proposed. The newly proposed method takes images separated in fields and wavelengths utilizing a simple tool called the field identifier (FI). Then, the keystone and the smile are calculated fast and repeatedly from a single measurement image while measuring the WFE with the Shack-Hartmann sensor with the minimum change of the measurement setup. With this method, hyperspectral imager is aligned and its geometrical distortions are measured.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection and correction of spectral and spatial misregistrations for hyperspectral data using phase correlation method

Naoto Yokoya, Norihide Miyamura, and Akira Iwasaki
Appl. Opt. 49(24) 4568-4575 (2010)

Assembly and alignment method for optimized spatial resolution of off-axis three-mirror fore optics of hyperspectral imager

Youngsoo Kim, Jinsuk Hong, Byungin Choi, Jong-Ung Lee, Yeonsoo Kim, and Hyunsook Kim
Opt. Express 25(17) 20817-20828 (2017)

Interferometric Method of Measuring the Spectral Slit Width of Spectrometers*

Vincent J. Coates and Harry Hausdorff
J. Opt. Soc. Am. 45(6) 425-430 (1955)

References

  • View by:
  • |
  • |
  • |

  1. M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water S.A. 33(2), 145–151 (2007).
  2. J. B. Breckingridge, “Evolution of imaging spectrometry: past, present, and future,” Proc. SPIE 2819, 2–6 (1996).
    [Crossref]
  3. W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
    [Crossref]
  4. P. Shippert, “Why use hyperspectral imagery?” Photogramm. Eng. Remote Sensing 70(4), 377–396 (2004).
  5. N. A. Treaty, Survey of Hyperspectral and Multispectral Imaging Technologies, (2007).
  6. X. Ceamanos and S. Douté, “Sylvain. Spectral smile correction of CRISM/MRO hyperspectral images,” in IEEE Transactions on Geoscience and Remote Sensing (IEEE, 2010), pp. 3951–3959.
  7. D. Jakovels, J. Filipovs, G. Erins, and J. Taskovs, “Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors,” Proc. SPIE 9245, 92450P (2014).
    [Crossref]
  8. R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
    [Crossref]
  9. J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion, a space-based imaging spectrometer,” in IEEE Transactions on Geoscience and Remote Sensing (IEEE, 2003), pp. 1160–1173.
  10. H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
    [Crossref]
  11. B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
    [Crossref]
  12. C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
    [Crossref]
  13. T. U. Kampe, “Method and apparatus for characterizing hyperspectral instruments.” U.S. Patent No. 7,554,667. (2009).
  14. G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1988), Chap. 2.
  15. P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
    [Crossref]
  16. P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
    [Crossref] [PubMed]
  17. X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente, “Analytical design of an Offner imaging spectrometer,” Opt. Express 14(20), 9156–9168 (2006).
    [Crossref] [PubMed]
  18. F. W. L. Esmonde-White, K. A. Esmonde-White, and M. D. Morris, “Minor distortions with major consequences: correcting distortions in imaging spectrographs,” Appl. Spectrosc. 65(1), 85–98 (2011).
    [Crossref] [PubMed]

2014 (2)

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

D. Jakovels, J. Filipovs, G. Erins, and J. Taskovs, “Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors,” Proc. SPIE 9245, 92450P (2014).
[Crossref]

2011 (2)

F. W. L. Esmonde-White, K. A. Esmonde-White, and M. D. Morris, “Minor distortions with major consequences: correcting distortions in imaging spectrographs,” Appl. Spectrosc. 65(1), 85–98 (2011).
[Crossref] [PubMed]

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

2009 (2)

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

2007 (1)

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water S.A. 33(2), 145–151 (2007).

2006 (1)

2004 (1)

P. Shippert, “Why use hyperspectral imagery?” Photogramm. Eng. Remote Sensing 70(4), 377–396 (2004).

1998 (2)

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
[Crossref] [PubMed]

1996 (1)

J. B. Breckingridge, “Evolution of imaging spectrometry: past, present, and future,” Proc. SPIE 2819, 2–6 (1996).
[Crossref]

1995 (1)

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

Anderson, M. E.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

Basedow, R. W.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

Bender, H. A.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

Bingham, G.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Blaney, D.

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

Breckingridge, J. B.

J. B. Breckingridge, “Evolution of imaging spectrometry: past, present, and future,” Proc. SPIE 2819, 2–6 (1996).
[Crossref]

Bulcock, H.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water S.A. 33(2), 145–151 (2007).

Carmer, D. C.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

Chetty, K.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water S.A. 33(2), 145–151 (2007).

Couce, B.

Cutter, M.

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

de la Fuente, R.

Erins, G.

D. Jakovels, J. Filipovs, G. Erins, and J. Taskovs, “Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors,” Proc. SPIE 9245, 92450P (2014).
[Crossref]

Esmonde-White, F. W. L.

Esmonde-White, K. A.

Filipovs, J.

D. Jakovels, J. Filipovs, G. Erins, and J. Taskovs, “Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors,” Proc. SPIE 9245, 92450P (2014).
[Crossref]

Gorp, B. V.

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

Govender, M.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water S.A. 33(2), 145–151 (2007).

Green, R. O.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

Huang, H.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Jakovels, D.

D. Jakovels, J. Filipovs, G. Erins, and J. Taskovs, “Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors,” Proc. SPIE 9245, 92450P (2014).
[Crossref]

Kireev, S.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Korniski, R. J.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

Larar, A.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Leigh, R. J.

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

Li, J.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Liu, X.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Lobb, D.

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

Maker, P. D.

Monks, P. S.

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

Montero-Orille, C.

Morris, M. D.

Mouroulis, P.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
[Crossref] [PubMed]

Mouroulis, P. Z.

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

Muller, R. E.

Prieto-Blanco, X.

Remedios, J. J.

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

Revercomb, H.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Rodriguez, J.

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

Sellar, R. G.

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

Shippert, P.

P. Shippert, “Why use hyperspectral imagery?” Photogramm. Eng. Remote Sensing 70(4), 377–396 (2004).

Silson, D. W.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

Smith, W. L.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Sobel, H.

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

Taskovs, J.

D. Jakovels, J. Filipovs, G. Erins, and J. Taskovs, “Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors,” Proc. SPIE 9245, 92450P (2014).
[Crossref]

Thomas, D. A.

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

Treaty, N. A.

N. A. Treaty, Survey of Hyperspectral and Multispectral Imaging Technologies, (2007).

Whyte, C.

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

Williams, T.

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

Wilson, D. W.

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
[Crossref] [PubMed]

Zhou, D.

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Atmos. Chem. Phys. (1)

W. L. Smith, H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev, “Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere,” Atmos. Chem. Phys. 9(15), 5563–5574 (2009).
[Crossref]

Atmos. Meas. Tech. (1)

C. Whyte, R. J. Leigh, D. Lobb, T. Williams, J. J. Remedios, M. Cutter, and P. S. Monks, “Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy,” Atmos. Meas. Tech. 2(2), 789–800 (2009).
[Crossref]

Opt. Express (1)

Photogramm. Eng. Remote Sensing (1)

P. Shippert, “Why use hyperspectral imagery?” Photogramm. Eng. Remote Sensing 70(4), 377–396 (2004).

Proc. SPIE (6)

J. B. Breckingridge, “Evolution of imaging spectrometry: past, present, and future,” Proc. SPIE 2819, 2–6 (1996).
[Crossref]

D. Jakovels, J. Filipovs, G. Erins, and J. Taskovs, “Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors,” Proc. SPIE 9245, 92450P (2014).
[Crossref]

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Silson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

B. V. Gorp, P. Mouroulis, D. W. Wilson, J. Rodriguez, H. Sobel, R. G. Sellar, D. Blaney, and R. O. Green, “Optical design and performance of the ultra-compact imaging spectrometer,” Proc. SPIE 8158, 81580L (2011).
[Crossref]

Water S.A. (1)

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water S.A. 33(2), 145–151 (2007).

Other (5)

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion, a space-based imaging spectrometer,” in IEEE Transactions on Geoscience and Remote Sensing (IEEE, 2003), pp. 1160–1173.

N. A. Treaty, Survey of Hyperspectral and Multispectral Imaging Technologies, (2007).

X. Ceamanos and S. Douté, “Sylvain. Spectral smile correction of CRISM/MRO hyperspectral images,” in IEEE Transactions on Geoscience and Remote Sensing (IEEE, 2010), pp. 3951–3959.

T. U. Kampe, “Method and apparatus for characterizing hyperspectral instruments.” U.S. Patent No. 7,554,667. (2009).

G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1988), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

A brief concept of the conventional measurement method of the keystone and smile.

Fig. 2
Fig. 2

Optical Layout of VNIR and SWIR channels of Spectrometer.

Fig. 3
Fig. 3

Smile. (a) when x peak is out of the region x initial and x final . (b) x peak is within the region of x initial and x final .

Fig. 4
Fig. 4

Scheme of the Periodically Sampled smile measurement.

Fig. 5
Fig. 5

(a) when x peak is in the middle of the region x k x k+1 and x initial x final at the same time. (b) when x peak is not in the middle of the region x k and x k+1 .

Fig. 6
Fig. 6

The coordinate reset so as the inflection point is to be the origin.

Fig. 7
Fig. 7

Calculated Accuracy according to the number of sampling points.

Fig. 8
Fig. 8

The FI. (a) The comparison of the actual slit attached in the spectrometer and the FI. (c) The overlaid slit and the FI in the measurement setup.

Fig. 9
Fig. 9

Alignment and Measurement setup. (a) Setup for keystone and smile measurement with the folding mirror (FM). (b) Setup for WFE measurement without the FM.

Fig. 10
Fig. 10

VNIR detector image of the krypton lamp. (a) Image without the FI. (b) Image with the FI.

Fig. 11
Fig. 11

Signal Reference coordinates for keystone and smile calculation.

Fig. 12
Fig. 12

(a) Reference Axes of each compensator's orientation and movement. (b) VNIR Channel Orientation coincided with the reference axis. (c) SWIR channel Orientation coincided with the reference axis.

Fig. 13
Fig. 13

The performance of the VNIR and SWIR channel after alignment and fixation. (a) Keysotne of the VNIR channnel (b) Keystone of the SWIR channel. (c) Smile of the VNIR Channel (d) Smile of the SWIR channel.

Tables (5)

Tables Icon

Table 1 The Optical requirements for the VNIR and SWIR channels.

Tables Icon

Table 2 Specification of VNIR and SWIR Channels of the Spectrometer.

Tables Icon

Table 3 Calculated Accuracy according to the number of sampling points.

Tables Icon

Table 4 Worst WFE of each spectrometer channel.

Tables Icon

Table 5 The final Performance of the VNIR and SWIR channel of the Spectrometer after fixation.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S= | f( x final )f( x initial ) |
S=f( x peak )Min( f( x initial ),f( x final ) )
S s =Max( f( x 0 ),f( x 1 ),,f( x n ) )Min( f( x 0 ),f( x 1 ),,f( x n ) )
S t =f( x peak )Min( f( x 0 ),f( x 1 ),,f( x n ) )
A s = S s S t ×100
ΔS= S t S s
A smin = f( x k )f( x 0 ) f( x peak )f( x 0 ) ×100
f( x )=a x 2
A smin = f( x k )f( x 0 ) f( x peak )f( x 0 ) ×100= a x k 2 a x 0 2 a x peak 2 a x 0 2 ×100= x k 2 x 0 2 x peak 2 x 0 2 ×100
x k =g( n )= x 0 n
A smin =f( n )= ( x 0 /n ) 2 x 0 2 x 0 2 ×100=( 1 1 n 2 )×100.
S n =max( y 1,n , y 2,n , y 3,n y m,n )min( y 1,n , y 2,n , y 3,n y m,n )
K m =max( x m,1 , x m,2 , x m,3 x m,n )min( x m,1 , x m,2 , x m,3 x m,n )

Metrics