Abstract

MEMS mirrors are currently used in many applications to steer beams of light. An area of continued research is developing mirrors with varifocal capability that allows the beam to be shaped and focused. In this work, we study the varifocal capability of a 380 μm diameter, thermally actuated MEMS mirror with a ± 40° tip-tilt angle and a radius of curvature between −0.48 mm to 20.5 mm. Light is coupled to the mirror via a single mode optical fiber, similar to an indoor optical wireless communication architecture. The performance of the mirror is characterized with respect to (1) the profile of the reflected beam as the mirror deforms and (2) the mirror’s impact when integrated into an optical communication system. We found that the mirror can focus light to a beam with a 0.18° half-angle divergence. Additionally, the ability to change the shape of fiberized light from a wide to narrow beam provides an unmatched level of dynamic control and significantly improves the bit error rate in an optical communication system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability

Jessica Morrison, Matthias Imboden, Thomas D.C. Little, and D. J. Bishop
Opt. Express 23(7) 9555-9566 (2015)

Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation

Tianquan Su, Shanshan Wang, Robert E. Parks, Peng Su, and James H. Burge
Appl. Opt. 52(29) 7117-7126 (2013)

Far-field, linewidth and thermal characteristics of a high-speed 1550-nm MEMS tunable VCSEL

Sujoy Paul, Mohammad Tanvir Haidar, Julijan Cesar, Mohammadreza Malekizandi, Benjamin Kögel, Christian Neumeyr, Markus Ortsiefer, and Franko Küppers
Opt. Express 24(12) 13142-13156 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Milanović, A. Kasturi, and V. Hachtel, “High Brightness MEMS Mirror Based Head-Up Display (HUD) Modules with Wireless Data Streaming Capability,” Proc. SPIE 9375, 93750A (2015).
  2. J. Reitterer, F. Fidler, G. Schmid, T. Riel, C. Hambeck, F. Saint Julien-Wallsee, W. Leeb, and U. Schmid, “Design and evaluation of a large-scale autostereoscopic multi-view laser display for outdoor applications,” Opt. Express 22, 27063–27068 (2014).
    [Crossref] [PubMed]
  3. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” in Proceedings of IEEE (IEEE, 1998), vol. 86, pp. 1687–1704.
    [Crossref]
  4. M. Strathman, Y. Liu, X. Li, and L. Y. Lin, “Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging,” Opt. Express 21, 23934–23941 (2013).
    [Crossref] [PubMed]
  5. L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
    [Crossref]
  6. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2013).
    [Crossref]
  7. P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
    [Crossref]
  8. A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. C. Thomsen, and D. O’Brien, “A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System,” J. Lightwave Technol. 34, 2510–2517 (2016).
    [Crossref]
  9. J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).
  10. C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks,” Opt. Express 24, 19211–19227 (2016).
    [Crossref] [PubMed]
  11. T. Sasaki and K. Hane, “Varifocal micromirror integrated with comb-drive scanner on silicon-on-insulator wafer,” J. Microelectromech. Syst. 21, 971–980 (2012).
    [Crossref]
  12. R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsys. Technol. 18, 475–480 (2012).
    [Crossref]
  13. J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
    [Crossref] [PubMed]
  14. V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
    [Crossref]
  15. J. C. Chau, C. Morales, and T. D. C. Little, “Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel,” in Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (Junction Publishing, 2016), pp. 347–352.
  16. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-Speed Optical Wireless Communication System for Indoor Applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
    [Crossref]
  17. H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010), 1st ed.
    [Crossref]
  18. R. Paschotta, “Focal Length,” https://www.rp-photonics.com/focal_length.html .
  19. M. T.-K. Hou and R. Chen, “Effect of width on the stress-induced bending of micromachined bilayer cantilevers,” J. of Micromech. Microeng. 13, 141–148 (2002).
    [Crossref]
  20. L. Couch, Digital and Analog Communication Systems (Pearson, 2007), 7th ed.

2016 (3)

2015 (2)

V. Milanović, A. Kasturi, and V. Hachtel, “High Brightness MEMS Mirror Based Head-Up Display (HUD) Modules with Wireless Data Streaming Capability,” Proc. SPIE 9375, 93750A (2015).

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (4)

M. Strathman, Y. Liu, X. Li, and L. Y. Lin, “Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging,” Opt. Express 21, 23934–23941 (2013).
[Crossref] [PubMed]

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2013).
[Crossref]

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

2012 (2)

T. Sasaki and K. Hane, “Varifocal micromirror integrated with comb-drive scanner on silicon-on-insulator wafer,” J. Microelectromech. Syst. 21, 971–980 (2012).
[Crossref]

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsys. Technol. 18, 475–480 (2012).
[Crossref]

2011 (1)

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-Speed Optical Wireless Communication System for Indoor Applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[Crossref]

2003 (1)

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

2002 (1)

M. T.-K. Hou and R. Chen, “Effect of width on the stress-induced bending of micromachined bilayer cantilevers,” J. of Micromech. Microeng. 13, 141–148 (2002).
[Crossref]

Bishop, D. J.

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

Brandl, P.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Cable, A. E.

Cao, Z.

Chau, J. C.

J. C. Chau, C. Morales, and T. D. C. Little, “Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel,” in Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (Junction Publishing, 2016), pp. 347–352.

Chen, R.

M. T.-K. Hou and R. Chen, “Effect of width on the stress-induced bending of micromachined bilayer cantilevers,” J. of Micromech. Microeng. 13, 141–148 (2002).
[Crossref]

Choi, W.

Couch, L.

L. Couch, Digital and Analog Communication Systems (Pearson, 2007), 7th ed.

Douglass, M. R.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” in Proceedings of IEEE (IEEE, 1998), vol. 86, pp. 1687–1704.
[Crossref]

Duker, J. S.

Faulkner, G.

Fidler, F.

Fork, A.

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

Fujimoto, J. G.

Gaberl, W.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Gomez, A.

Hachtel, V.

V. Milanović, A. Kasturi, and V. Hachtel, “High Brightness MEMS Mirror Based Head-Up Display (HUD) Modules with Wireless Data Streaming Capability,” Proc. SPIE 9375, 93750A (2015).

Hambeck, C.

Hane, K.

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsys. Technol. 18, 475–480 (2012).
[Crossref]

T. Sasaki and K. Hane, “Varifocal micromirror integrated with comb-drive scanner on silicon-on-insulator wafer,” J. Microelectromech. Syst. 21, 971–980 (2012).
[Crossref]

Haustein, T.

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

Hokari, R.

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsys. Technol. 18, 475–480 (2012).
[Crossref]

Hornbeck, L. J.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” in Proceedings of IEEE (IEEE, 1998), vol. 86, pp. 1687–1704.
[Crossref]

Hornegger, J.

Hou, M. T.-K.

M. T.-K. Hou and R. Chen, “Effect of width on the stress-induced bending of micromachined bilayer cantilevers,” J. of Micromech. Microeng. 13, 141–148 (2002).
[Crossref]

Imboden, M.

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

Jayaraman, V.

Jungnickel, V.

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

Kasturi, A.

V. Milanović, A. Kasturi, and V. Hachtel, “High Brightness MEMS Mirror Based Head-Up Display (HUD) Modules with Wireless Data Streaming Capability,” Proc. SPIE 9375, 93750A (2015).

Koomson, V.

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

Koonen, T.

Kraus, M. F.

Kruger, U.

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

Leeb, W.

Li, L.

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Li, R.

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Li, X.

Lim, C.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-Speed Optical Wireless Communication System for Indoor Applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[Crossref]

Lin, L. Y.

Little, T. D. C.

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

J. C. Chau, C. Morales, and T. D. C. Little, “Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel,” in Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (Junction Publishing, 2016), pp. 347–352.

Liu, J. J.

Liu, Y.

Lu, C. D.

Lubeigt, W.

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Meier, R. E.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” in Proceedings of IEEE (IEEE, 1998), vol. 86, pp. 1687–1704.
[Crossref]

Miao, Y.

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

Milanovic, V.

V. Milanović, A. Kasturi, and V. Hachtel, “High Brightness MEMS Mirror Based Head-Up Display (HUD) Modules with Wireless Data Streaming Capability,” Proc. SPIE 9375, 93750A (2015).

Morales, C.

J. C. Chau, C. Morales, and T. D. C. Little, “Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel,” in Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (Junction Publishing, 2016), pp. 347–352.

Morrison, J.

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

Nirmalathas, A.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-Speed Optical Wireless Communication System for Indoor Applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[Crossref]

O’Brien, D.

Oh, C. W.

Pohl, V.

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

Polzer, A.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Potsaid, B.

Quintana, C.

Rahaim, M.

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

Reitterer, J.

Riel, T.

Saint Julien-Wallsee, F.

Sasaki, T.

T. Sasaki and K. Hane, “Varifocal micromirror integrated with comb-drive scanner on silicon-on-insulator wafer,” J. Microelectromech. Syst. 21, 971–980 (2012).
[Crossref]

Schidl, S.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Schmid, G.

Schmid, U.

Shi, K.

Skafidas, E.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-Speed Optical Wireless Communication System for Indoor Applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[Crossref]

Strathman, M.

Tangdiongga, E.

Thomsen, B. C.

Uttamchandani, D.

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Van Kessel, P. F.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” in Proceedings of IEEE (IEEE, 1998), vol. 86, pp. 1687–1704.
[Crossref]

von Helmolt, C.

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

Wang, K.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-Speed Optical Wireless Communication System for Indoor Applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[Crossref]

Zappe, H.

H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010), 1st ed.
[Crossref]

Zimmermann, H.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photon. Technol. Lett. (2)

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-Speed Optical Wireless Communication System for Indoor Applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[Crossref]

IEEE Trans. Wireless Commun. (1)

V. Jungnickel, A. Fork, T. Haustein, U. Kruger, V. Pohl, and C. von Helmolt, “Electronic Tracking For Wireless Infrared Communications,” IEEE Trans. Wireless Commun. 2, 989–999 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (2)

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

T. Sasaki and K. Hane, “Varifocal micromirror integrated with comb-drive scanner on silicon-on-insulator wafer,” J. Microelectromech. Syst. 21, 971–980 (2012).
[Crossref]

J. of Micromech. Microeng. (1)

M. T.-K. Hou and R. Chen, “Effect of width on the stress-induced bending of micromachined bilayer cantilevers,” J. of Micromech. Microeng. 13, 141–148 (2002).
[Crossref]

Microsys. Technol. (1)

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsys. Technol. 18, 475–480 (2012).
[Crossref]

Opt. Express (4)

Proc. SPIE (2)

V. Milanović, A. Kasturi, and V. Hachtel, “High Brightness MEMS Mirror Based Head-Up Display (HUD) Modules with Wireless Data Streaming Capability,” Proc. SPIE 9375, 93750A (2015).

J. Morrison, M. Rahaim, Y. Miao, M. Imboden, T. D. C. Little, V. Koomson, and D. J. Bishop, “Directional Visible Light Communication Signal Enhancement Using a Varifocal Micromirror with Four Degrees of Freedom,” Proc. SPIE 9954, 99540C (2016).

Other (5)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” in Proceedings of IEEE (IEEE, 1998), vol. 86, pp. 1687–1704.
[Crossref]

J. C. Chau, C. Morales, and T. D. C. Little, “Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel Using Spatial Light Modulators in MIMO Visible Light Communication Receivers to Dynamically Control the Optical Channel,” in Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (Junction Publishing, 2016), pp. 347–352.

H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010), 1st ed.
[Crossref]

R. Paschotta, “Focal Length,” https://www.rp-photonics.com/focal_length.html .

L. Couch, Digital and Analog Communication Systems (Pearson, 2007), 7th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

False color SEM image of thermally actuated varifocal mirror connected to four thermal bimorphs via serpentine springs.

Fig. 2
Fig. 2

(a) Illustration (not to scale) of test setup demonstrating that the detector is always normal to the reflected beam and is always the same distance from the mirror. (b) System schematic of the bit error rate tester (BERT) system used for collecting bit error rate (BER) data. A PXIe-6555 generates a PRBS which is used to control the laser driver and subsequently the fiber coupled laser. The light is focused using the MEMS mirror onto the detector whose signal is compared to the original PRBS signal in the PXIe-6555.

Fig. 3
Fig. 3

Plot of the optical efficiency versus the distance between the end of the fiber and the mirror. Efficiency is defined as the ratio between the power reflected from the mirror and the power measured from the fiber. Included is a theoretical math model, limit of the theoretical math model as the holes and slots are removed, simulation results with no misalignment between the fiber and mirror, a 30 μm misalignment, and measured data.

Fig. 4
Fig. 4

Beam size versus the power to heat the mirror which corresponds to the mirrors radius of curvature. The vertical green line in both plots represent the position of the minima in (a) for comparison. The camera is 90 mm from them mirror. (a) Characterization with an optical angle of 5 degrees. (b) Characterization of the beam with an optical angle of 20 degrees.

Fig. 5
Fig. 5

The beam diameter versus optical angle. If the mirror power is held constant while the bimorph is actuating, the mirror’s radius of curvature changes and the beam size increases. Optimizing the power at each tilt angle allows the beam size to stay relatively constant. The camera is 90 mm from the mirror.

Fig. 6
Fig. 6

Comparison between the MEMS mirror, a collimated beam (0.017° half angle [10]) and an optical fiber (4.6° half angle) with respect to beam diameter versus distance. The optical fiber and collimated beam have a single beam size at each distance whereas the varifocal mirror can achieve a range of sizes. The extrapolated range is based on the measured data points. The theoretical range encompasses the extrapolated range, as well as beam sizes that couldn’t be measured directly but in principle the mirror could achieve based on the mirror’s shape, demonstrated in [13].

Fig. 7
Fig. 7

Comparison of the measured and simulated beam profiles. The profiles on the left are measured profiles under three conditions: focused at a low angle, defocused at a low angle, and focused at a larger angle. The profiles on the right are the simulated counterparts to the measured profiles.

Fig. 8
Fig. 8

Comparison of the x-axis beam diameter measured data and Zemax simulation. The measured data is repeated from Fig. 4 (a). The camera is 90 mm from the mirror.

Fig. 9
Fig. 9

Comparison of the beam diameter and the BER relative to the mirror power. This shows that as the beam diameter decreases the BER also decreases. Using the mirror to focus the beam to a smaller spot size significantly improves the BER. The BER experiment used a ND filter that allowed 0.5% of the light to be transmitted. Both the camera and detector are 90 mm from the mirror.

Fig. 10
Fig. 10

(a) Illustration (not to scale) of setup used to test the effect of sweeping a beam across a stationary detector.(b) BER as the beam moves away from the center of the detector. This plot includes data using two different filter setups. The black circles are data using a filter that allowed 3% of the light to be transmitted and the red squares used a filter that allowed 1% of the light to be transmitted. The detector is 250 mm from the mirror.

Tables (1)

Tables Icon

Table 1 Typical BER Testing Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z = c r 2 1 + 1 ( 1 + k ) c 2 r 2 + i = 1 8 α i r 2 i + i = 1 N A i Z i ( ρ , ϕ )

Metrics