Abstract

The plasmonic characteristics of a periodic array of cavities in a silicon substrate are investigated for hot-electron photodetection. Resonances of cavity surface plasmons bound to air cavities and silicon cavities, and resonance of Bragg−surface plasmon polaritons are illustrated by the map of metal absorption. Hybrid modes formed with combination of these modes can strongly enhance absorption in metal and be exploited to optimize hot-electron photodetectors for single-band and dual-band detection at optical communication wavelengths.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band

Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir, and Uriel Levy
Opt. Express 20(27) 28594-28602 (2012)

Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm

Maurizio Casalino, Giuseppe Coppola, Mario Iodice, Ivo Rendina, and Luigi Sirleto
Opt. Express 20(11) 12599-12609 (2012)

Enhanced light absorption in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe

Jingshu Guo, Zhiwei Wu, and Yanli Zhao
Opt. Express 25(9) 10057-10069 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
    [Crossref]
  2. K. Kliewer and R. Fuchs, “Surface plasmon in a semi-infinite free electron gas,” Phys. Rev. B 3(7), 2270–2278 (1971).
    [Crossref]
  3. K. Kliewer, T. Inagaki, and E. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24(6), 3644–3646 (1981).
    [Crossref]
  4. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  5. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  6. W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2016).
  7. J. B. Chou, X. H. Li, Y. Wang, D. P. Fenning, A. Elfaer, J. Viegas, M. Jouiad, Y. Shao-Horn, and S. G. Kim, “Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals,” Opt. Express 24(18), A1234–A1244 (2016).
    [Crossref] [PubMed]
  8. K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
    [Crossref] [PubMed]
  9. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
    [Crossref] [PubMed]
  10. F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal–hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
    [Crossref]
  11. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335 (2015).
    [Crossref]
  12. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4(1), 7103 (2015).
    [Crossref] [PubMed]
  13. K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
    [Crossref] [PubMed]
  14. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  15. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref] [PubMed]
  16. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [Crossref] [PubMed]
  17. Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
    [Crossref] [PubMed]
  18. Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
    [Crossref]
  19. S. Ishii, S.-i. Inoue, R. Ueda, and A. Otomo, “Optical detection in a waveguide geometry with a single metallic contact,” ACS Photonics 1(11), 1089–1092 (2014).
    [Crossref]
  20. M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
    [Crossref] [PubMed]
  21. M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
    [Crossref]
  22. P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
    [Crossref] [PubMed]
  23. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
    [Crossref] [PubMed]
  24. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
    [Crossref]
  25. L. Z. Hao and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997). J.
  27. J. Li, Y. Zhang, T. Mei, and M. Fiddy, “Surface plasmon laser based on metal cavity array with two different modes,” Opt. Express 18(23), 23626–23632 (2010).
    [Crossref] [PubMed]
  28. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  29. W. E. Spicer, “Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds,” Phys. Rev. 112(1), 114–122 (1958).
    [Crossref]
  30. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
    [Crossref]
  31. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976)

2016 (2)

2015 (6)

K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal–hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335 (2015).
[Crossref]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4(1), 7103 (2015).
[Crossref] [PubMed]

Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
[Crossref]

2014 (3)

S. Ishii, S.-i. Inoue, R. Ueda, and A. Otomo, “Optical detection in a waveguide geometry with a single metallic contact,” ACS Photonics 1(11), 1089–1092 (2014).
[Crossref]

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

2013 (4)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

2012 (1)

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

2011 (5)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

L. Z. Hao and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

2010 (3)

J. Li, Y. Zhang, T. Mei, and M. Fiddy, “Surface plasmon laser based on metal cavity array with two different modes,” Opt. Express 18(23), 23626–23632 (2010).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

1981 (1)

K. Kliewer, T. Inagaki, and E. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24(6), 3644–3646 (1981).
[Crossref]

1971 (1)

K. Kliewer and R. Fuchs, “Surface plasmon in a semi-infinite free electron gas,” Phys. Rev. B 3(7), 2270–2278 (1971).
[Crossref]

1970 (1)

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

1958 (1)

W. E. Spicer, “Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds,” Phys. Rev. 112(1), 114–122 (1958).
[Crossref]

1931 (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Arakawa, E.

K. Kliewer, T. Inagaki, and E. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24(6), 3644–3646 (1981).
[Crossref]

Atar, F. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4(1), 7103 (2015).
[Crossref] [PubMed]

Berini, P.

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Casalino, M.

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Chen, C.

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

Chen, H. L.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Chou, J. B.

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Coppola, G.

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Deng, J.

Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
[Crossref]

Desiatov, B.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Elfaer, A.

Endriz, J. G.

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Fenning, D. P.

Fiddy, M.

Fowler, R. H.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Fuchs, R.

K. Kliewer and R. Fuchs, “Surface plasmon in a semi-infinite free electron gas,” Phys. Rev. B 3(7), 2270–2278 (1971).
[Crossref]

García de Arquer, F. P.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal–hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Gioffrè, M.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Goykhman, I.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Halas, N. J.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hao, L. Z.

L. Z. Hao and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Inagaki, T.

K. Kliewer, T. Inagaki, and E. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24(6), 3644–3646 (1981).
[Crossref]

Inoue, S.-i.

S. Ishii, S.-i. Inoue, R. Ueda, and A. Otomo, “Optical detection in a waveguide geometry with a single metallic contact,” ACS Photonics 1(11), 1089–1092 (2014).
[Crossref]

Iodice, M.

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Ishii, S.

S. Ishii, S.-i. Inoue, R. Ueda, and A. Otomo, “Optical detection in a waveguide geometry with a single metallic contact,” ACS Photonics 1(11), 1089–1092 (2014).
[Crossref]

Jouiad, M.

Jung, C. H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Khurgin, J. B.

Kim, S. G.

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Kliewer, K.

K. Kliewer, T. Inagaki, and E. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24(6), 3644–3646 (1981).
[Crossref]

K. Kliewer and R. Fuchs, “Surface plasmon in a semi-infinite free electron gas,” Phys. Rev. B 3(7), 2270–2278 (1971).
[Crossref]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Konstantatos, G.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal–hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Lai, Y. S.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Lee, Y. K.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Levy, U.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Li, J.

Li, W.

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2016).

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Li, X.

Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
[Crossref]

K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
[Crossref] [PubMed]

Li, X. H.

Lin, K. T.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Mazurski, N.

Mei, T.

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Mihi, A.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal–hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Nazirzadeh, M. A.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4(1), 7103 (2015).
[Crossref] [PubMed]

Nordlander, P.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Okyay, A. K.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4(1), 7103 (2015).
[Crossref] [PubMed]

Olivieri, A.

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

Otomo, A.

S. Ishii, S.-i. Inoue, R. Ueda, and A. Otomo, “Optical detection in a waveguide geometry with a single metallic contact,” ACS Photonics 1(11), 1089–1092 (2014).
[Crossref]

Park, J.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Park, J. Y.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Qiu, M.

L. Z. Hao and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Rao, S.

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

Rendina, I.

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Saffioti, N.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Seo, H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Shao-Horn, Y.

Shappir, J.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Sirleto, L.

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Sobhani, A.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Somorjai, G. A.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Spicer, W. E.

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

W. E. Spicer, “Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds,” Phys. Rev. 112(1), 114–122 (1958).
[Crossref]

Turgut, B. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4(1), 7103 (2015).
[Crossref] [PubMed]

Ueda, R.

S. Ishii, S.-i. Inoue, R. Ueda, and A. Otomo, “Optical detection in a waveguide geometry with a single metallic contact,” ACS Photonics 1(11), 1089–1092 (2014).
[Crossref]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Valentine, J. G.

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2016).

Viegas, J.

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Wang, Y.

J. B. Chou, X. H. Li, Y. Wang, D. P. Fenning, A. Elfaer, J. Viegas, M. Jouiad, Y. Shao-Horn, and S. G. Kim, “Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals,” Opt. Express 24(18), A1234–A1244 (2016).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Wu, K.

Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
[Crossref]

K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
[Crossref] [PubMed]

Wu, S.

K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
[Crossref] [PubMed]

Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
[Crossref]

Yu, C. C.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Zhan, Y.

Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
[Crossref]

K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
[Crossref] [PubMed]

Zhang, C.

K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal–hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

S. Ishii, S.-i. Inoue, R. Ueda, and A. Otomo, “Optical detection in a waveguide geometry with a single metallic contact,” ACS Photonics 1(11), 1089–1092 (2014).
[Crossref]

Appl. Phys. Lett. (2)

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96(24), 241112 (2010).
[Crossref]

Y. Zhan, X. Li, K. Wu, S. Wu, and J. Deng, “Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection,” Appl. Phys. Lett. 106(8), 081109 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

J. Appl. Phys. (1)

M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm,” J. Appl. Phys. 114(15), 153103 (2013).
[Crossref]

Nano Lett. (5)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nanophotonics (1)

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2016).

Nanotechnology (1)

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

Nat. Commun. (3)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Optica (1)

Phys. Rev. (2)

W. E. Spicer, “Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds,” Phys. Rev. 112(1), 114–122 (1958).
[Crossref]

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Phys. Rev. B (3)

L. Z. Hao and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

K. Kliewer and R. Fuchs, “Surface plasmon in a semi-infinite free electron gas,” Phys. Rev. B 3(7), 2270–2278 (1971).
[Crossref]

K. Kliewer, T. Inagaki, and E. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24(6), 3644–3646 (1981).
[Crossref]

Phys. Rev. Lett. (1)

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

Sci. Rep. (2)

K. Wu, Y. Zhan, C. Zhang, S. Wu, and X. Li, “Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,” Sci. Rep. 5(1), 14304 (2015).
[Crossref] [PubMed]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4(1), 7103 (2015).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997). J.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the cavity array photodetector with hot electrons excited by using the surface cavity array covered by a gold film. (b) schematic diagram of Au-Si junction under zero bias in section, hot electrons excited in the Au layer diffuse towards the M/S interface generating a hot electrons photocurrent.

Fig. 2
Fig. 2

Absorption in the plasmonic crystal as a function of wavelength and cavity width for the different metal thickness under consideration t = (a) 15nm, (b) 30nm, (c) 50nm and (d) 100nm, P = 1400nm, h = 1200nm.

Fig. 3
Fig. 3

Distributions of the electric fields: (a) with an input wavelength of 1300 nm for point P1 in Fig. .2(a). (b) Distributions of the electric fields of electrodes with an input wavelength of 1680 nm for point P2 in Fig. .2(d). (c) Electric fields with an input wavelength of 1680 nm for point P3 in Fig. .2(d).

Fig. 4
Fig. 4

Absorbance and responsivity as functions of the photon wavelength for two devices with different device dimensions: (a) and (b) for remarkably intense absorption, (c) and (d) for double wavelength absorption of 1310 nm and 1550 nm.

Metrics