Abstract

A high-sensitivity photonic crystal fiber long-period grating (PCF-LPG) methane sensor with cryptophane-A-6Me absorbed on a poly(acrylic acid)-carbon nanotubes/ polypropylene amine hydrochloride (PAA-CNTs/PAH) nanofilm was investigated. The sensing film was coated onto the internal surface of a photonic crystal fiber cladding air holes by an electrostatic self-assembly technique. Based on a finite element method and the coupled local-mode theory, the effects of the sensing film’s refractive index (RI) and thickness on the resonant wavelength were theoretically and numerically analyzed. When the sensing film RI decreases from 1.55 to 1.53, and the thickness increases from 100 nm to 200 nm, the resonant wavelength has a blue shift. A higher RI sensitivity with 1.075 × 103 nm RIU–1 is observed for the film thickness of 200 nm. The PCF-LPG methane sensor was fabricated by a pressurized injection method. The sensing experimental result shows that the resonant wavelength of the transmission spectra has a blue shift when the methane concentration increases from 0.0% to 3.5% by volume. The sensor has a good sensitivity of 1.078 nm%–1 and a low detection limit of 0.18% for a film thickness of 210 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection

Jianchun Yang, Chuanyi Tao, Xueming Li, Guangqin Zhu, and Weimin Chen
Opt. Express 19(15) 14696-14706 (2011)

Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles

Sergiy Korposh, Stephen W. James, Seung-Woo Lee, Stephen Topliss, Sammy C. Cheung, William J. Batty, and Ralph P. Tatam
Opt. Express 18(12) 13227-13238 (2010)

High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD

Shan Zhu, Fufei Pang, Sujuan Huang, Fang Zou, Yanhua Dong, and Tingyun Wang
Opt. Express 23(11) 13880-13888 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Sazal, Z. Jafar, and M. Behdad, “A review on understanding explosions from methane-air mixture,” J. Loss. Prevent. Proc. 40, 507–523 (2016).
    [Crossref]
  2. J. Yang, L. Xu, and W. Chen, “An optical fiber methane gas sensing film sensor based on core diameter mismatch,” Chin. Opt. Lett. 8(5), 482–484 (2010).
    [Crossref]
  3. C. Tao, X. Li, J. Yang, and Y. Shi, “Optical Fiber Sensing Element Based on Luminescence Quenching of Silica Nanowires Modified with Cryptophane-A for the Detection of Methane,” Sens. Actuators B Chem. 156(2), 553–558 (2011).
    [Crossref]
  4. S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
    [Crossref] [PubMed]
  5. J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
    [Crossref] [PubMed]
  6. J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
    [Crossref]
  7. A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
    [Crossref] [PubMed]
  8. J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
    [Crossref]
  9. J. Ju and W. Jin, “Long period gratings in photonic crystal fibers,” Photonic Sensors 2(1), 65–70 (2012).
    [Crossref]
  10. Z. He, Y. Zhu, J. Kaňka, and H. Du, “Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings,” Opt. Express 18(2), 507–512 (2010).
    [Crossref] [PubMed]
  11. L. Jin, W. Jin, J. Ju, and Y. Wang, “Coupled Local-Mode Theory for Strongly Modulated Long Period Gratings,” J. Lightwave Technol. 28(12), 1745–1751 (2010).
    [Crossref]
  12. Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
    [Crossref]
  13. Y. Zhu, Z. He, J. Kaňka, and H. Du, “Numerical analysis of refractive index sensitivity of long- period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 129(1), 99–105 (2008).
    [Crossref]
  14. Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
    [Crossref]
  15. Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
    [Crossref]
  16. J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182(6), 16–24 (2013).
    [Crossref]
  17. F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
    [Crossref] [PubMed]
  18. S. Zheng, M. Ghandehari, and J. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sens. Actuators B Chem. 223, 324–332 (2016).
    [Crossref]
  19. S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuators B Chem. 176(1), 264–274 (2013).
    [Crossref]
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, London, 1983).
  21. K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [Crossref]
  22. T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
    [Crossref]

2016 (3)

K. Sazal, Z. Jafar, and M. Behdad, “A review on understanding explosions from methane-air mixture,” J. Loss. Prevent. Proc. 40, 507–523 (2016).
[Crossref]

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

S. Zheng, M. Ghandehari, and J. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sens. Actuators B Chem. 223, 324–332 (2016).
[Crossref]

2015 (1)

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

2014 (1)

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

2013 (3)

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182(6), 16–24 (2013).
[Crossref]

S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuators B Chem. 176(1), 264–274 (2013).
[Crossref]

T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
[Crossref]

2012 (2)

2011 (2)

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical Fiber Sensing Element Based on Luminescence Quenching of Silica Nanowires Modified with Cryptophane-A for the Detection of Methane,” Sens. Actuators B Chem. 156(2), 553–558 (2011).
[Crossref]

J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
[Crossref] [PubMed]

2008 (3)

Y. Zhu, Z. He, J. Kaňka, and H. Du, “Numerical analysis of refractive index sensitivity of long- period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 129(1), 99–105 (2008).
[Crossref]

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

2002 (1)

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Behdad, M.

K. Sazal, Z. Jafar, and M. Behdad, “A review on understanding explosions from methane-air mixture,” J. Loss. Prevent. Proc. 40, 507–523 (2016).
[Crossref]

Che, X.

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

Chen, W.

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
[Crossref] [PubMed]

J. Yang, L. Xu, and W. Chen, “An optical fiber methane gas sensing film sensor based on core diameter mismatch,” Chin. Opt. Lett. 8(5), 482–484 (2010).
[Crossref]

Chen, X.

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Choi, M. M. F.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

Conde, O. M.

A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
[Crossref] [PubMed]

Cubillas, A. M.

A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
[Crossref] [PubMed]

Dong, C.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

Du, C.

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Du, H.

F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
[Crossref] [PubMed]

Z. He, Y. Zhu, J. Kaňka, and H. Du, “Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings,” Opt. Express 18(2), 507–512 (2010).
[Crossref] [PubMed]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Y. Zhu, Z. He, J. Kaňka, and H. Du, “Numerical analysis of refractive index sensitivity of long- period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 129(1), 99–105 (2008).
[Crossref]

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Ghandehari, M.

S. Zheng, M. Ghandehari, and J. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sens. Actuators B Chem. 223, 324–332 (2016).
[Crossref]

He, Z.

F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
[Crossref] [PubMed]

Z. He, Y. Zhu, J. Kaňka, and H. Du, “Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings,” Opt. Express 18(2), 507–512 (2010).
[Crossref] [PubMed]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Y. Zhu, Z. He, J. Kaňka, and H. Du, “Numerical analysis of refractive index sensitivity of long- period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 129(1), 99–105 (2008).
[Crossref]

Huang, J.

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

Huang, Q.

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Jafar, Z.

K. Sazal, Z. Jafar, and M. Behdad, “A review on understanding explosions from methane-air mixture,” J. Loss. Prevent. Proc. 40, 507–523 (2016).
[Crossref]

James, S.

T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
[Crossref]

Jin, L.

Jin, W.

Ju, J.

Kanka, J.

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182(6), 16–24 (2013).
[Crossref]

Z. He, Y. Zhu, J. Kaňka, and H. Du, “Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings,” Opt. Express 18(2), 507–512 (2010).
[Crossref] [PubMed]

Y. Zhu, Z. He, J. Kaňka, and H. Du, “Numerical analysis of refractive index sensitivity of long- period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 129(1), 99–105 (2008).
[Crossref]

Korposh, S.

T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
[Crossref]

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Krishnaswamy, S.

S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuators B Chem. 176(1), 264–274 (2013).
[Crossref]

Lazaro, J. M.

A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
[Crossref] [PubMed]

Lee, S.

T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
[Crossref]

Li, X.

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
[Crossref] [PubMed]

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical Fiber Sensing Element Based on Luminescence Quenching of Silica Nanowires Modified with Cryptophane-A for the Detection of Methane,” Sens. Actuators B Chem. 156(2), 553–558 (2011).
[Crossref]

Li, Z.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

Lopez-Higuera, J. M.

A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
[Crossref] [PubMed]

Ou, J.

S. Zheng, M. Ghandehari, and J. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sens. Actuators B Chem. 223, 324–332 (2016).
[Crossref]

Ou, Z.

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Petrovich, M. N.

A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
[Crossref] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Sazal, K.

K. Sazal, Z. Jafar, and M. Behdad, “A review on understanding explosions from methane-air mixture,” J. Loss. Prevent. Proc. 40, 507–523 (2016).
[Crossref]

Shi, Y.

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical Fiber Sensing Element Based on Luminescence Quenching of Silica Nanowires Modified with Cryptophane-A for the Detection of Methane,” Sens. Actuators B Chem. 156(2), 553–558 (2011).
[Crossref]

Shuang, S.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

Tao, C.

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
[Crossref] [PubMed]

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical Fiber Sensing Element Based on Luminescence Quenching of Silica Nanowires Modified with Cryptophane-A for the Detection of Methane,” Sens. Actuators B Chem. 156(2), 553–558 (2011).
[Crossref]

Tatam, R.

T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
[Crossref]

Tian, F.

Wang, J.

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Wang, T.

T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
[Crossref]

Wang, Y.

Wu, S.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

Xu, L.

Yan, P.

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Yang, J.

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
[Crossref] [PubMed]

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical Fiber Sensing Element Based on Luminescence Quenching of Silica Nanowires Modified with Cryptophane-A for the Detection of Methane,” Sens. Actuators B Chem. 156(2), 553–558 (2011).
[Crossref]

J. Yang, L. Xu, and W. Chen, “An optical fiber methane gas sensing film sensor based on core diameter mismatch,” Chin. Opt. Lett. 8(5), 482–484 (2010).
[Crossref]

Yu, Y.

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Zhang, Y.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

Zheng, S.

S. Zheng, M. Ghandehari, and J. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sens. Actuators B Chem. 223, 324–332 (2016).
[Crossref]

S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuators B Chem. 176(1), 264–274 (2013).
[Crossref]

Zhou, L.

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

Zhu, G.

Zhu, Y.

S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuators B Chem. 176(1), 264–274 (2013).
[Crossref]

Z. He, Y. Zhu, J. Kaňka, and H. Du, “Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings,” Opt. Express 18(2), 507–512 (2010).
[Crossref] [PubMed]

Y. Zhu, Z. He, J. Kaňka, and H. Du, “Numerical analysis of refractive index sensitivity of long- period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 129(1), 99–105 (2008).
[Crossref]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Anal. Chim. Acta (1)

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-Filtered Light Methane Gas Sensor Based on Cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Loss. Prevent. Proc. (1)

K. Sazal, Z. Jafar, and M. Behdad, “A review on understanding explosions from methane-air mixture,” J. Loss. Prevent. Proc. 40, 507–523 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photonic Sensors (2)

J. Ju and W. Jin, “Long period gratings in photonic crystal fibers,” Photonic Sensors 2(1), 65–70 (2012).
[Crossref]

Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sensors 4(1), 92–96 (2014).
[Crossref]

Sens. Actuators B Chem. (9)

Y. Zhu, Z. He, J. Kaňka, and H. Du, “Numerical analysis of refractive index sensitivity of long- period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 129(1), 99–105 (2008).
[Crossref]

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182(6), 16–24 (2013).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015).
[Crossref]

J. Yang, L. Zhou, X. Che, J. Huang, X. Li, and W. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sens. Actuators B Chem. 235, 717–722 (2016).
[Crossref]

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical Fiber Sensing Element Based on Luminescence Quenching of Silica Nanowires Modified with Cryptophane-A for the Detection of Methane,” Sens. Actuators B Chem. 156(2), 553–558 (2011).
[Crossref]

S. Zheng, M. Ghandehari, and J. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sens. Actuators B Chem. 223, 324–332 (2016).
[Crossref]

S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuators B Chem. 176(1), 264–274 (2013).
[Crossref]

T. Wang, S. Korposh, S. James, R. Tatam, and S. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B Chem. 185(8), 117–124 (2013).
[Crossref]

Sensors (Basel) (1)

A. M. Cubillas, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane,” Sensors (Basel) 9(8), 6261–6272 (2009).
[Crossref] [PubMed]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, London, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Structural diagram of the PCF-LPG methane sensor. (b) An idealized collapsed model for the longitudinal structural variation around the PCF-LPG notch shown later in Fig. 5(a). (c) SEM image of the PCF used. (d) Cross-sections at different locations from A to E.

Fig. 2
Fig. 2

(a) Simulation model of the PCF-LPG sensor with the sensing film on the internal surface of cladding air holes; the blue line and the red line represent PAA-CNTs/PAH and cryptophane-A-6Me film, respectively. (b) Distribution of LP11 mode in the uncollapsed plane A and collapsed plane E.

Fig. 3
Fig. 3

(a) The effective RI difference (Δneff) between the LP01 and LP11 modes for the incident wavelength λ of 1550 nm. (b) Distribution of coupling coefficient in the collapsed region.

Fig. 4
Fig. 4

Effects of (a) the film RI and (b) thickness on the resonant wavelength shift.

Fig. 5
Fig. 5

(a) Side view of a cladding notch formed by CO2–laser irradiation, with a depth of 23 μm. (b) Interaction between the cryptophane-A-6Me and the methane molecule.

Fig. 6
Fig. 6

(a) Coating process of PAA-CNTs/PAH nanofilms and the cryptophane-A-6Me layer onto the inner surface of the PCF cladding air holes, and red, yellow, purple, and green represent PAA, PAH, CNTs, and cryptophane-A-6Me film, respectively. (b) SEM cross-section of the PCF-LPG coated sensing film, with the thickness of 105 nm, 155 nm, and 210 nm, respectively.

Fig. 7
Fig. 7

Schematic diagram of the experimental setup.

Fig. 8
Fig. 8

The resonant wavelengths of the sensor transmission spectra with (a) 105 nm and (b) 210 nm film thickness in the methane concentration range of 0.0% to 3.5% (including respective partial enlarged drawings).

Fig. 9
Fig. 9

(a) Calibration curve between the wavelength shift and methane concentration with the film thicknesses of 105 nm, 155 nm, and 210 nm, respectively. (b) Sensor signal with the film thickness of 210 nm when repeatedly exposed to pure nitrogen (N2) or 1.5% of methane (CH4).

Tables (1)

Tables Icon

Table 1 Effect of potential interferents on the resonant wavelength of the PCF-LPG sensor

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d b j dz i β j (z) b j = l [ C jl (z) b l + C jl (z) b l ] d b j dz + i β j (z) b j = l [ C jl (z) b l + C jl (z) b l ]
b ±j (z) = a ±j (z)exp[ ± i 0 z β j (z) dz ]
C jl (z) = 1 4 A ( h ^ t,j × e ^ t,l z e ^ t,j × h ^ t,l z ) z ^ dA, jl
e t,j = E t,j 1 2 A E t,j × H t,j dA
h t,j = H t,j 1 2 A E t,j × H t,j dA
d a co dz =C(z) a cl exp{ i 0 z [ β cl (z) β co (z) ] dz } d a cl dz =C(z) a co exp{ i 0 z [ β co (z) β cl (z) ] dz }
C(z)= N=0 f N exp( i 2Nπ Λ z )
Δϕ= 0 z [ β cl (z) β co (z) + 2Nπ Λ ] dz