Abstract

Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A–X (0, 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A–X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring the instantaneous length of the plasma column, the discharge voltage and the translational temperature, from which the electron temperature (Te) of the gliding arc discharge was estimated. The uncertainties of the translational, rotational, vibrational and electron temperatures were analyzed. The relations of these four different temperatures (Te>Tv>Tr >Tt) suggest a high-degree non-equilibrium state of the gliding arc discharge.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical diagnostics of a gliding arc

Z.W. Sun, J. J. Zhu, Z.S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano
Opt. Express 21(5) 6028-6044 (2013)

Plasma Diagnostics by Spectroscopic Methods

David Robinson and Peter D. Lenn
Appl. Opt. 6(6) 983-1000 (1967)

Single-shot ultrafast coherent anti-Stokes Raman scattering of vibrational/rotational nonequilibrium

Chloe E. Dedic, Terrence R. Meyer, and James B. Michael
Optica 4(5) 563-570 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
    [Crossref]
  2. F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys. 79(5), 2245–2250 (1996).
    [Crossref]
  3. A. Czernichowski, “Gliding arc - applications to engineering and environment control,” Pure Appl. Chem. 66(6), 1301–1310 (1994).
    [Crossref]
  4. J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
    [Crossref]
  5. T. Ombrello, X. Qin, Y. G. Ju, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J. 44(1), 142–150 (2006).
    [Crossref]
  6. A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
    [Crossref]
  7. D. H. Lee, K. T. Kim, M. S. Cha, and Y. H. Song, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combust. Inst. 31(2), 3343–3351 (2007).
    [Crossref]
  8. H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
    [Crossref]
  9. F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
    [Crossref]
  10. X. Tu and J. C. Whitehead, “Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials,” Int. J. Hydrogen Energy 39(18), 9658–9669 (2014).
    [Crossref]
  11. A. Indarto, J. W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy 31(14), 2986–2995 (2006).
    [Crossref]
  12. R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
    [Crossref]
  13. C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
    [Crossref]
  14. Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
    [Crossref]
  15. Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
    [Crossref]
  16. Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
    [Crossref] [PubMed]
  17. V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, “H2S destruction in 50 Hz and 25 kHz gliding arc reactors,” J. Appl. Phys. 84(3), 1215–1221 (1998).
    [Crossref]
  18. J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
    [Crossref]
  19. R. Burlica, M. J. Kirkpatrick, and B. R. Locke, “Formation of reactive species in gliding arc discharges with liquid water,” J. Electrost. 64(1), 35–43 (2006).
    [Crossref]
  20. Y. G. Ju and W. T. Sun, “Plasma assisted combustion: Dynamics and chemistry,” Prog Energ Combust 48, 21–83 (2015).
    [Crossref]
  21. Z. Yin, Z. Eckert, I. V. Adamovich, and W. R. Lempert, “Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge,” Proc. Combust. Inst. 35(3), 3455–3462 (2015).
    [Crossref]
  22. D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, “Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air,” Plasma Sources Sci. Technol. 15(4), 818–827 (2006).
    [Crossref]
  23. I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
    [Crossref]
  24. O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys. 87(4), 1632–1641 (2000).
    [Crossref]
  25. A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
    [Crossref]
  26. B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
    [Crossref]
  27. T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
    [Crossref]
  28. S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol. 19(6), 065003 (2010).
    [Crossref]
  29. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12(2), 125–138 (2003).
    [Crossref]
  30. C. Zhang, T. Shao, P. Yan, and Y. X. Zhou, “Nanosecond-pulse gliding discharges between point-to-point electrodes in open air,” Plasma Sources Sci. Technol. 23(3), 035004 (2014).
    [Crossref]
  31. Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
    [Crossref]
  32. S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol. 19(6), 065004 (2010).
    [Crossref]
  33. Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
    [Crossref]
  34. J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
    [Crossref]
  35. L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
    [Crossref]
  36. N. C. Roy, M. G. Hafez, and M. R. Talukder, “Characterization of atmospheric pressure H2O/O2 gliding arc plasma for the production of OH and O radicals,” Phys. Plasmas 23(8), 083502 (2016).
    [Crossref]
  37. J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
    [Crossref]
  38. Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
    [Crossref] [PubMed]
  39. S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
    [Crossref]
  40. S. R. Sun, S. Kolev, H. X. Wang, and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study,” Plasma Sources Sci. Technol. 26(5), 055017 (2017).
    [Crossref]
  41. S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
    [Crossref]
  42. P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol. 23(2), 023001 (2014).
    [Crossref]
  43. A. Ehn, J. Zhu, X. Li, and J. Kiefer, “Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering,” Appl. Spectrosc. 71(3), 341–366 (2017).
    [Crossref] [PubMed]
  44. J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
    [Crossref]
  45. J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
    [Crossref]
  46. S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
    [Crossref]
  47. G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
    [Crossref]
  48. A. V. Phelps and L. C. Pitchford, “Anisotropic scattering of electrons by N2 and its effect on electron transport,” Phys. Rev. A Gen. Phys. 31(5), 2932–2949 (1985).
    [Crossref] [PubMed]
  49. SIGLO database, http://www.lxcat.laplace.univ-tlse.fr , retrieved June 4, 2013.
  50. A. P. Yalin, Y. Z. Ionikh, and R. B. Miles, “Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering,” Appl. Opt. 41(18), 3753–3762 (2002).
    [Crossref] [PubMed]
  51. X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
    [Crossref]
  52. E. Kristensson, A. Ehn, J. Bood, and M. Alden, “Advancements in Rayleigh scattering thermometry by means of structured illumination,” Proc. Combust. Inst. 35(3), 3689–3696 (2015).
    [Crossref]

2017 (6)

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
[Crossref]

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

S. R. Sun, S. Kolev, H. X. Wang, and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study,” Plasma Sources Sci. Technol. 26(5), 055017 (2017).
[Crossref]

A. Ehn, J. Zhu, X. Li, and J. Kiefer, “Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering,” Appl. Spectrosc. 71(3), 341–366 (2017).
[Crossref] [PubMed]

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

2016 (1)

N. C. Roy, M. G. Hafez, and M. R. Talukder, “Characterization of atmospheric pressure H2O/O2 gliding arc plasma for the production of OH and O radicals,” Phys. Plasmas 23(8), 083502 (2016).
[Crossref]

2015 (5)

Y. G. Ju and W. T. Sun, “Plasma assisted combustion: Dynamics and chemistry,” Prog Energ Combust 48, 21–83 (2015).
[Crossref]

Z. Yin, Z. Eckert, I. V. Adamovich, and W. R. Lempert, “Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge,” Proc. Combust. Inst. 35(3), 3455–3462 (2015).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

E. Kristensson, A. Ehn, J. Bood, and M. Alden, “Advancements in Rayleigh scattering thermometry by means of structured illumination,” Proc. Combust. Inst. 35(3), 3689–3696 (2015).
[Crossref]

2014 (7)

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol. 23(2), 023001 (2014).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

C. Zhang, T. Shao, P. Yan, and Y. X. Zhou, “Nanosecond-pulse gliding discharges between point-to-point electrodes in open air,” Plasma Sources Sci. Technol. 23(3), 035004 (2014).
[Crossref]

Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
[Crossref]

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

X. Tu and J. C. Whitehead, “Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials,” Int. J. Hydrogen Energy 39(18), 9658–9669 (2014).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

2013 (5)

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
[Crossref] [PubMed]

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

2012 (2)

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
[Crossref]

2011 (1)

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
[Crossref]

2010 (3)

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol. 19(6), 065004 (2010).
[Crossref]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol. 19(6), 065003 (2010).
[Crossref]

R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
[Crossref]

2009 (1)

X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
[Crossref]

2008 (1)

A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
[Crossref]

2007 (1)

D. H. Lee, K. T. Kim, M. S. Cha, and Y. H. Song, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combust. Inst. 31(2), 3343–3351 (2007).
[Crossref]

2006 (4)

A. Indarto, J. W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy 31(14), 2986–2995 (2006).
[Crossref]

T. Ombrello, X. Qin, Y. G. Ju, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J. 44(1), 142–150 (2006).
[Crossref]

R. Burlica, M. J. Kirkpatrick, and B. R. Locke, “Formation of reactive species in gliding arc discharges with liquid water,” J. Electrost. 64(1), 35–43 (2006).
[Crossref]

D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, “Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air,” Plasma Sources Sci. Technol. 15(4), 818–827 (2006).
[Crossref]

2005 (1)

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

2003 (1)

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12(2), 125–138 (2003).
[Crossref]

2002 (3)

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
[Crossref]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
[Crossref]

A. P. Yalin, Y. Z. Ionikh, and R. B. Miles, “Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering,” Appl. Opt. 41(18), 3753–3762 (2002).
[Crossref] [PubMed]

2000 (2)

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys. 87(4), 1632–1641 (2000).
[Crossref]

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
[Crossref]

1999 (1)

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
[Crossref]

1998 (1)

V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, “H2S destruction in 50 Hz and 25 kHz gliding arc reactors,” J. Appl. Phys. 84(3), 1215–1221 (1998).
[Crossref]

1996 (3)

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys. 79(5), 2245–2250 (1996).
[Crossref]

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
[Crossref]

1994 (1)

A. Czernichowski, “Gliding arc - applications to engineering and environment control,” Pure Appl. Chem. 66(6), 1301–1310 (1994).
[Crossref]

1985 (1)

A. V. Phelps and L. C. Pitchford, “Anisotropic scattering of electrons by N2 and its effect on electron transport,” Phys. Rev. A Gen. Phys. 31(5), 2932–2949 (1985).
[Crossref] [PubMed]

Adamovich, I. V.

Z. Yin, Z. Eckert, I. V. Adamovich, and W. R. Lempert, “Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge,” Proc. Combust. Inst. 35(3), 3455–3462 (2015).
[Crossref]

Addou, A.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
[Crossref]

Alden, M.

E. Kristensson, A. Ehn, J. Bood, and M. Alden, “Advancements in Rayleigh scattering thermometry by means of structured illumination,” Proc. Combust. Inst. 35(3), 3689–3696 (2015).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

Aldén, M.

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

Alpers, A.

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

Andersen, T. L.

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Balkwill, D.

R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
[Crossref]

Beckers, J.

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

Benstaali, B.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
[Crossref]

Bo, Z.

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
[Crossref] [PubMed]

Bogaerts, A.

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

S. R. Sun, S. Kolev, H. X. Wang, and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study,” Plasma Sources Sci. Technol. 26(5), 055017 (2017).
[Crossref]

Bolotov, A. V.

Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
[Crossref]

Bood, J.

E. Kristensson, A. Ehn, J. Bood, and M. Alden, “Advancements in Rayleigh scattering thermometry by means of structured illumination,” Proc. Combust. Inst. 35(3), 3689–3696 (2015).
[Crossref]

Boubert, P.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
[Crossref]

Brisset, J. L.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
[Crossref]

Bruggeman, P. J.

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol. 23(2), 023001 (2014).
[Crossref]

Burlica, R.

R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
[Crossref]

R. Burlica, M. J. Kirkpatrick, and B. R. Locke, “Formation of reactive species in gliding arc discharges with liquid water,” J. Electrost. 64(1), 35–43 (2006).
[Crossref]

Carter, C.

T. Ombrello, X. Qin, Y. G. Ju, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J. 44(1), 142–150 (2006).
[Crossref]

Cen, K.

Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
[Crossref] [PubMed]

Cen, K. F.

X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
[Crossref]

Cha, M. S.

D. H. Lee, K. T. Kim, M. S. Cha, and Y. H. Song, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combust. Inst. 31(2), 3343–3351 (2007).
[Crossref]

Chapelle, J.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
[Crossref]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
[Crossref]

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys. 79(5), 2245–2250 (1996).
[Crossref]

Cheron, B. G.

X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
[Crossref]

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
[Crossref]

Chi, Y.

Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
[Crossref] [PubMed]

Choi, J. W.

A. Indarto, J. W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy 31(14), 2986–2995 (2006).
[Crossref]

Cormier, J. M.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
[Crossref]

V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, “H2S destruction in 50 Hz and 25 kHz gliding arc reactors,” J. Appl. Phys. 84(3), 1215–1221 (1998).
[Crossref]

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys. 79(5), 2245–2250 (1996).
[Crossref]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
[Crossref]

Czernichowski, A.

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

A. Czernichowski, “Gliding arc - applications to engineering and environment control,” Pure Appl. Chem. 66(6), 1301–1310 (1994).
[Crossref]

Dalaine, V.

V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, “H2S destruction in 50 Hz and 25 kHz gliding arc reactors,” J. Appl. Phys. 84(3), 1215–1221 (1998).
[Crossref]

Dittrichova, L.

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

Dowson, A.

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Du, C.

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

Du, C. M.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Eckert, Z.

Z. Yin, Z. Eckert, I. V. Adamovich, and W. R. Lempert, “Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge,” Proc. Combust. Inst. 35(3), 3455–3462 (2015).
[Crossref]

Ehn, A.

J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

A. Ehn, J. Zhu, X. Li, and J. Kiefer, “Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering,” Appl. Spectrosc. 71(3), 341–366 (2017).
[Crossref] [PubMed]

E. Kristensson, A. Ehn, J. Bood, and M. Alden, “Advancements in Rayleigh scattering thermometry by means of structured illumination,” Proc. Combust. Inst. 35(3), 3689–3696 (2015).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Farouk, B.

D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, “Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air,” Plasma Sources Sci. Technol. 15(4), 818–827 (2006).
[Crossref]

Feng, Z. B.

Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
[Crossref]

Frants, O. B.

Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
[Crossref]

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
[Crossref]

Fridman, A.

A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
[Crossref]

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
[Crossref]

Fridman, A. A.

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol. 19(6), 065003 (2010).
[Crossref]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol. 19(6), 065004 (2010).
[Crossref]

D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, “Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air,” Plasma Sources Sci. Technol. 15(4), 818–827 (2006).
[Crossref]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
[Crossref]

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys. 87(4), 1632–1641 (2000).
[Crossref]

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

Gangoli, S.

A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
[Crossref]

Gangoli, S. P.

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol. 19(6), 065003 (2010).
[Crossref]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol. 19(6), 065004 (2010).
[Crossref]

Gao, J.

J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Geyman, V. G.

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
[Crossref]

Grim, R. G.

R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
[Crossref]

Gritzmann, P.

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

Gutsol, A.

A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
[Crossref]

Gutsol, A. F.

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol. 19(6), 065004 (2010).
[Crossref]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol. 19(6), 065003 (2010).
[Crossref]

D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, “Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air,” Plasma Sources Sci. Technol. 15(4), 818–827 (2006).
[Crossref]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
[Crossref]

Hafez, M. G.

N. C. Roy, M. G. Hafez, and M. R. Talukder, “Characterization of atmospheric pressure H2O/O2 gliding arc plasma for the production of OH and O radicals,” Phys. Plasmas 23(8), 083502 (2016).
[Crossref]

Hagelaar, G. J. M.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

Indarto, A.

A. Indarto, J. W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy 31(14), 2986–2995 (2006).
[Crossref]

Ionikh, Y. Z.

Ju, Y. G.

Y. G. Ju and W. T. Sun, “Plasma assisted combustion: Dynamics and chemistry,” Prog Energ Combust 48, 21–83 (2015).
[Crossref]

A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
[Crossref]

T. Ombrello, X. Qin, Y. G. Ju, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J. 44(1), 142–150 (2006).
[Crossref]

Kalashnikov, N. Y.

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
[Crossref]

Kasyanov, V. S.

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
[Crossref]

Kennedy, L. A.

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
[Crossref]

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys. 87(4), 1632–1641 (2000).
[Crossref]

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
[Crossref]

Kiefer, J.

Kim, K. T.

D. H. Lee, K. T. Kim, M. S. Cha, and Y. H. Song, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combust. Inst. 31(2), 3343–3351 (2007).
[Crossref]

Kirkpatrick, M. J.

R. Burlica, M. J. Kirkpatrick, and B. R. Locke, “Formation of reactive species in gliding arc discharges with liquid water,” J. Electrost. 64(1), 35–43 (2006).
[Crossref]

Kolev, S.

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

S. R. Sun, S. Kolev, H. X. Wang, and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study,” Plasma Sources Sci. Technol. 26(5), 055017 (2017).
[Crossref]

Korolev, Y. D.

Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
[Crossref]

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
[Crossref]

Krause, J.

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Kristensson, E.

E. Kristensson, A. Ehn, J. Bood, and M. Alden, “Advancements in Rayleigh scattering thermometry by means of structured illumination,” Proc. Combust. Inst. 35(3), 3689–3696 (2015).
[Crossref]

Kroesen, G.

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Kruger, C. H.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12(2), 125–138 (2003).
[Crossref]

Kudrle, V.

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Kuroki, T.

Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
[Crossref]

Kusano, Y.

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

Kuznetsova, I. V.

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
[Crossref]

Landl, N. V.

Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
[Crossref]

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
[Crossref]

Larsson, A.

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Laux, C. O.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12(2), 125–138 (2003).
[Crossref]

Lee, D. H.

D. H. Lee, K. T. Kim, M. S. Cha, and Y. H. Song, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combust. Inst. 31(2), 3343–3351 (2007).
[Crossref]

Lee, H.

A. Indarto, J. W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy 31(14), 2986–2995 (2006).
[Crossref]

Lefaucheux, P.

V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, “H2S destruction in 50 Hz and 25 kHz gliding arc reactors,” J. Appl. Phys. 84(3), 1215–1221 (1998).
[Crossref]

Leipold, F.

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Lempert, W. R.

Z. Yin, Z. Eckert, I. V. Adamovich, and W. R. Lempert, “Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge,” Proc. Combust. Inst. 35(3), 3455–3462 (2015).
[Crossref]

Li, H. X.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Li, X.

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

A. Ehn, J. Zhu, X. Li, and J. Kiefer, “Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering,” Appl. Spectrosc. 71(3), 341–366 (2017).
[Crossref] [PubMed]

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

Li, X. S.

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

Li, Z.

J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Li, Z. S.

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

Linss, V.

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol. 23(2), 023001 (2014).
[Crossref]

Liu, H.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Liu, J. B.

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

Liu, J. L.

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

Locke, B. R.

R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
[Crossref]

R. Burlica, M. J. Kirkpatrick, and B. R. Locke, “Formation of reactive species in gliding arc discharges with liquid water,” J. Electrost. 64(1), 35–43 (2006).
[Crossref]

Miles, R. B.

Moseev, D.

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

Musiol, K.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
[Crossref]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
[Crossref]

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

Mutaf-Yardimci, O.

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys. 87(4), 1632–1641 (2000).
[Crossref]

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
[Crossref]

Nassar, H.

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

Nekhoroshev, V. O.

Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
[Crossref]

Nester, S.

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
[Crossref]

Ni, M.

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

Okubo, M.

Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
[Crossref]

Ombrello, T.

T. Ombrello, X. Qin, Y. G. Ju, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J. 44(1), 142–150 (2006).
[Crossref]

Ombrellol, T.

A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
[Crossref]

Pawelec, E.

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

Pellerin, S.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
[Crossref]

V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, “H2S destruction in 50 Hz and 25 kHz gliding arc reactors,” J. Appl. Phys. 84(3), 1215–1221 (1998).
[Crossref]

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys. 79(5), 2245–2250 (1996).
[Crossref]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
[Crossref]

Phelps, A. V.

A. V. Phelps and L. C. Pitchford, “Anisotropic scattering of electrons by N2 and its effect on electron transport,” Phys. Rev. A Gen. Phys. 31(5), 2932–2949 (1985).
[Crossref] [PubMed]

Pitchford, L. C.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

A. V. Phelps and L. C. Pitchford, “Anisotropic scattering of electrons by N2 and its effect on electron transport,” Phys. Rev. A Gen. Phys. 31(5), 2932–2949 (1985).
[Crossref] [PubMed]

Potocnáková, L.

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

Qin, X.

T. Ombrello, X. Qin, Y. G. Ju, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J. 44(1), 142–150 (2006).
[Crossref]

Ranaivosoloarimanana, A.

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

Richard, F.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
[Crossref]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
[Crossref]

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys. 79(5), 2245–2250 (1996).
[Crossref]

Roy, N. C.

N. C. Roy, M. G. Hafez, and M. R. Talukder, “Characterization of atmospheric pressure H2O/O2 gliding arc plasma for the production of OH and O radicals,” Phys. Plasmas 23(8), 083502 (2016).
[Crossref]

Sadeghi, N.

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol. 23(2), 023001 (2014).
[Crossref]

Saeki, N.

Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
[Crossref]

Salewski, M.

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Saveliev, A.

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
[Crossref]

Saveliev, A. V.

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys. 87(4), 1632–1641 (2000).
[Crossref]

Schram, D. C.

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol. 23(2), 023001 (2014).
[Crossref]

Schwarz, C.

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Schwenk, M.

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

Shao, T.

C. Zhang, T. Shao, P. Yan, and Y. X. Zhou, “Nanosecond-pulse gliding discharges between point-to-point electrodes in open air,” Plasma Sources Sci. Technol. 23(3), 035004 (2014).
[Crossref]

Shih, K. Y.

R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
[Crossref]

Simek, M.

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

Song, H. K.

A. Indarto, J. W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy 31(14), 2986–2995 (2006).
[Crossref]

Song, Y. H.

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

D. H. Lee, K. T. Kim, M. S. Cha, and Y. H. Song, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combust. Inst. 31(2), 3343–3351 (2007).
[Crossref]

Sorensen, B. F.

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Soucek, P.

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Spence, T. G.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12(2), 125–138 (2003).
[Crossref]

Šperka, J.

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Staack, D.

D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, “Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air,” Plasma Sources Sci. Technol. 15(4), 818–827 (2006).
[Crossref]

Sun, S.

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

Sun, S. R.

S. R. Sun, S. Kolev, H. X. Wang, and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study,” Plasma Sources Sci. Technol. 26(5), 055017 (2017).
[Crossref]

Sun, W. T.

Y. G. Ju and W. T. Sun, “Plasma assisted combustion: Dynamics and chemistry,” Prog Energ Combust 48, 21–83 (2015).
[Crossref]

Sun, Z.

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

Sun, Z. W.

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Tahara, M.

Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
[Crossref]

Talukder, M. R.

N. C. Roy, M. G. Hafez, and M. R. Talukder, “Characterization of atmospheric pressure H2O/O2 gliding arc plasma for the production of OH and O radicals,” Phys. Plasmas 23(8), 083502 (2016).
[Crossref]

Toftegaard, H. L.

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Trenchev, G.

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

Tu, X.

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

X. Tu and J. C. Whitehead, “Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials,” Int. J. Hydrogen Energy 39(18), 9658–9669 (2014).
[Crossref]

X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
[Crossref]

van Loon, J. J. W. A.

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Wang, H.

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

Wang, H. X.

S. R. Sun, S. Kolev, H. X. Wang, and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study,” Plasma Sources Sci. Technol. 26(5), 055017 (2017).
[Crossref]

Wang, J.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Wang, W.

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

Whitehead, J. C.

X. Tu and J. C. Whitehead, “Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials,” Int. J. Hydrogen Energy 39(18), 9658–9669 (2014).
[Crossref]

Wu, A.

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

Wu, E.

Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
[Crossref] [PubMed]

Xiong, Y.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Xu, Y.

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

Yalin, A. P.

Yan, J.

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
[Crossref] [PubMed]

Yan, J. H.

X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
[Crossref]

Yan, P.

C. Zhang, T. Shao, P. Yan, and Y. X. Zhou, “Nanosecond-pulse gliding discharges between point-to-point electrodes in open air,” Plasma Sources Sci. Technol. 23(3), 035004 (2014).
[Crossref]

Yan, X.

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

Yin, Z.

Z. Yin, Z. Eckert, I. V. Adamovich, and W. R. Lempert, “Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge,” Proc. Combust. Inst. 35(3), 3455–3462 (2015).
[Crossref]

Yu, L.

X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
[Crossref]

Zare, R. N.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12(2), 125–138 (2003).
[Crossref]

Zhang, C.

C. Zhang, T. Shao, P. Yan, and Y. X. Zhou, “Nanosecond-pulse gliding discharges between point-to-point electrodes in open air,” Plasma Sources Sci. Technol. 23(3), 035004 (2014).
[Crossref]

Zhang, H.

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

Zhang, L.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Zhao, T. L.

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

Zhou, Y. X.

C. Zhang, T. Shao, P. Yan, and Y. X. Zhou, “Nanosecond-pulse gliding discharges between point-to-point electrodes in open air,” Plasma Sources Sci. Technol. 23(3), 035004 (2014).
[Crossref]

Zhu, A. M.

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

Zhu, F.

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

Zhu, J.

J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
[Crossref]

A. Ehn, J. Zhu, X. Li, and J. Kiefer, “Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering,” Appl. Spectrosc. 71(3), 341–366 (2017).
[Crossref] [PubMed]

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Zhu, J. J.

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

Z. W. Sun, J. J. Zhu, Z. S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, “Optical diagnostics of a gliding arc,” Opt. Express 21(5), 6028–6044 (2013).
[Crossref] [PubMed]

Zikán, P.

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

Acta Phys. Pol. A (1)

A. Czernichowski, H. Nassar, A. Ranaivosoloarimanana, A. A. Fridman, M. Simek, K. Musiol, E. Pawelec, and L. Dittrichova, “Spectral and electrical diagnostics of gliding arc,” Acta Phys. Pol. A 89(5–6), 595–603 (1996).
[Crossref]

AIAA J. (1)

T. Ombrello, X. Qin, Y. G. Ju, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J. 44(1), 142–150 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Zhu, J. Gao, A. Ehn, M. Aldén, Z. Li, D. Moseev, Y. Kusano, M. Salewski, A. Alpers, P. Gritzmann, and M. Schwenk, “Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge,” Appl. Phys. Lett. 106(4), 044101 (2015).
[Crossref]

J. Zhu, J. Gao, Z. Li, A. Ehn, M. Aldén, A. Larsson, and Y. Kusano, “Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air,” Appl. Phys. Lett. 105(23), 234102 (2014).
[Crossref]

Z. B. Feng, N. Saeki, T. Kuroki, M. Tahara, and M. Okubo, “Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge,” Appl. Phys. Lett. 101(4), 041602 (2012).
[Crossref]

Appl. Spectrosc. (1)

Energy (1)

A. Indarto, J. W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy 31(14), 2986–2995 (2006).
[Crossref]

Eur. Phys. J. D (1)

J. Šperka, P. Souček, J. J. W. A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, and V. Kudrle, “Hypergravity effects on glide arc plasma,” Eur. Phys. J. D 67(12), 261 (2013).
[Crossref]

Fuel (1)

F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, and X. Tu, “Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor,” Fuel 199, 430–437 (2017).
[Crossref]

IEEE Trans. Plasma Sci. (1)

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-Current “Gliding Arc” in an Air Flow,” IEEE Trans. Plasma Sci. 39(12), 3319–3325 (2011).
[Crossref]

Int. J. Hydrogen Energy (2)

X. Tu and J. C. Whitehead, “Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials,” Int. J. Hydrogen Energy 39(18), 9658–9669 (2014).
[Crossref]

H. Zhang, C. Du, A. Wu, Z. Bo, J. Yan, and X. Li, “Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production,” Int. J. Hydrogen Energy 39(24), 12620–12635 (2014).
[Crossref]

J. Appl. Phys. (4)

V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, “H2S destruction in 50 Hz and 25 kHz gliding arc reactors,” J. Appl. Phys. 84(3), 1215–1221 (1998).
[Crossref]

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys. 79(5), 2245–2250 (1996).
[Crossref]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys. 92(8), 4231–4237 (2002).
[Crossref]

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys. 87(4), 1632–1641 (2000).
[Crossref]

J. Electrost. (1)

R. Burlica, M. J. Kirkpatrick, and B. R. Locke, “Formation of reactive species in gliding arc discharges with liquid water,” J. Electrost. 64(1), 35–43 (2006).
[Crossref]

J. Phys. D Appl. Phys. (5)

Y. Kusano, B. F. Sorensen, T. L. Andersen, H. L. Toftegaard, F. Leipold, M. Salewski, Z. W. Sun, J. J. Zhu, Z. S. Li, and M. Aldén, “Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester,” J. Phys. D Appl. Phys. 46(13), 135203 (2013).
[Crossref]

T. L. Zhao, Y. Xu, Y. H. Song, X. S. Li, J. L. Liu, J. B. Liu, and A. M. Zhu, “Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra,” J. Phys. D Appl. Phys. 46(34), 345201 (2013).
[Crossref]

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys. 33(19), 2407–2419 (2000).
[Crossref]

J. Zhu, Z. Sun, Z. Li, A. Ehn, M. Alden, M. Salewski, F. Leipold, and Y. Kusano, “Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements,” J. Phys. D Appl. Phys. 47(29), 295203 (2014).
[Crossref]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “A spectroscopic diagnostic method using UV OH band spectrum,” J. Phys. D Appl. Phys. 29(3), 726–739 (1996).
[Crossref]

J. Propuls. Power (1)

A. Fridman, A. Gutsol, S. Gangoli, Y. G. Ju, and T. Ombrellol, “Characteristics of Gliding Arc and Its Application in Combustion Enhancement,” J. Propuls. Power 24(6), 1216–1228 (2008).
[Crossref]

New J. Phys. (1)

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys. 14(1), 013010 (2012).
[Crossref]

Opt. Express (1)

Phys. Plasmas (3)

J. Zhu, J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, and Z. Li, “Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure,” Phys. Plasmas 24(1), 013514 (2017).
[Crossref]

X. Tu, L. Yu, J. H. Yan, K. F. Cen, and B. G. Cheron, “Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow,” Phys. Plasmas 16(11), 113506 (2009).
[Crossref]

N. C. Roy, M. G. Hafez, and M. R. Talukder, “Characterization of atmospheric pressure H2O/O2 gliding arc plasma for the production of OH and O radicals,” Phys. Plasmas 23(8), 083502 (2016).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

A. V. Phelps and L. C. Pitchford, “Anisotropic scattering of electrons by N2 and its effect on electron transport,” Phys. Rev. A Gen. Phys. 31(5), 2932–2949 (1985).
[Crossref] [PubMed]

Plasma Chem. Plasma Process. (2)

J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li, “In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence,” Plasma Chem. Plasma Process. 37(2), 433–450 (2017).
[Crossref]

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process. 22(4), 553–571 (2002).
[Crossref]

Plasma Process. Polym. (2)

R. Burlica, R. G. Grim, K. Y. Shih, D. Balkwill, and B. R. Locke, “Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray,” Plasma Process. Polym. 7(8), 640–649 (2010).
[Crossref]

S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas,” Plasma Process. Polym. 14(4–5), 1600110 (2017).
[Crossref]

Plasma Sources Sci. Technol. (10)

S. R. Sun, S. Kolev, H. X. Wang, and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study,” Plasma Sources Sci. Technol. 26(5), 055017 (2017).
[Crossref]

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol. 23(2), 023001 (2014).
[Crossref]

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol. 19(6), 065003 (2010).
[Crossref]

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12(2), 125–138 (2003).
[Crossref]

C. Zhang, T. Shao, P. Yan, and Y. X. Zhou, “Nanosecond-pulse gliding discharges between point-to-point electrodes in open air,” Plasma Sources Sci. Technol. 23(3), 035004 (2014).
[Crossref]

Y. D. Korolev, O. B. Frants, N. V. Landl, A. V. Bolotov, and V. O. Nekhoroshev, “Features of a near-cathode region in a gliding arc discharge in air flow,” Plasma Sources Sci. Technol. 23(5), 054016 (2014).
[Crossref]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol. 19(6), 065004 (2010).
[Crossref]

D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, “Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air,” Plasma Sources Sci. Technol. 15(4), 818–827 (2006).
[Crossref]

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. van Loon, J. Beckers, and V. Kudrle, “Gravity effects on a gliding arc in four noble gases: from normal to hypergravity,” Plasma Sources Sci. Technol. 24(2), 022002 (2015).
[Crossref]

Proc. Combust. Inst. (3)

Z. Yin, Z. Eckert, I. V. Adamovich, and W. R. Lempert, “Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge,” Proc. Combust. Inst. 35(3), 3455–3462 (2015).
[Crossref]

D. H. Lee, K. T. Kim, M. S. Cha, and Y. H. Song, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combust. Inst. 31(2), 3343–3351 (2007).
[Crossref]

E. Kristensson, A. Ehn, J. Bood, and M. Alden, “Advancements in Rayleigh scattering thermometry by means of structured illumination,” Proc. Combust. Inst. 35(3), 3689–3696 (2015).
[Crossref]

Prog Energ Combust (2)

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog Energ Combust 25(2), 211–231 (1999).
[Crossref]

Y. G. Ju and W. T. Sun, “Plasma assisted combustion: Dynamics and chemistry,” Prog Energ Combust 48, 21–83 (2015).
[Crossref]

Pure Appl. Chem. (1)

A. Czernichowski, “Gliding arc - applications to engineering and environment control,” Pure Appl. Chem. 66(6), 1301–1310 (1994).
[Crossref]

Rev. Sci. Instrum. (1)

Z. Bo, E. Wu, J. Yan, Y. Chi, and K. Cen, “Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition,” Rev. Sci. Instrum. 84(1), 016105 (2013).
[Crossref] [PubMed]

Other (1)

SIGLO database, http://www.lxcat.laplace.univ-tlse.fr , retrieved June 4, 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for simultaneous measurements of translational temperature, the current, the voltage, and the length of the plasma column. HV: high voltage power supply; PS: 4-channel PicoScope; PG: pulse generator; (b) Timing for measurements shown in (a); (c) Experimental setup for spectrometric measurements.

Fig. 2
Fig. 2

(a1) – (c1): Two-dimensional distribution of the Rayleigh scattering signal and the plasma emission; (a2) – (c2): Two-dimensional distribution of the translational temperatures that are calculated by use of the Rayleigh scattering signal shown in Figs. 2(a1) – 2(c1), respectively. The colorbar in Figs. 2(a1) – 2(c1) shows the intensity (arb. units) of the plasma emission signal (in the plasma column) and the Rayleigh scattering signal (in the vicinity of the plasma column) whereas that in Figs. 2(a2) – 2(c2) indicates the translational temperature (K) in the vicinity of the plasma column. For this specific experimental setting (an acquisition time of 2 μs), the translational temperature in the plasma column cannot be accurately shown due to interference from strong plasam emission. Typical sizes of the hot regions around the plasma columns are labeled. The acquisition time of the ICCD camera is set to 2 μs in order to collect both the Rayleigh scattering signal and the plasma emission signal.

Fig. 3
Fig. 3

Two examples of experimental results of a gliding arc discharge regarding the distribution of the translational temperature, the image of the plasma column, as well as waveforms of the current and voltage. (a1), (b1): Two-dimensional distribution of the translational temperature imaging; (a2), (b2): Axial temperature profile; (a3), (b3): Radial temperature profile; (a4), (b4): Image of the plasma column; (a5), (b5): the waveform of the voltage and the current. The temperature contour lines are shown in Figs. 3(a1) and 3(b1), and the number on each contour line shows the temperature (500, 700 and 900 K). A rectangle marked in Figs. 3(a4) and 3(b4) indicates the field of view for recording the Rayleigh scattering signal. The acquisition time of the ICCD camera for recording the pure Rayleigh scattering signal is 30 ns in order to significantly suppress the emission of the plasma column. The acquisition time for obtaining the image of the plasma column is 3 μs. A positive square marked in Figs. 3(a5) and 3(b5) represents the 3 μs acquisition time for recording the image of the plasma column. The simultaneous multi-parameter measurements (SMM) of the translational temperature, the voltage and the length of the plasma column allows for accurate determinations of the reduced electric field strength.

Fig. 4
Fig. 4

Dependence of the rotational temperature on the peak ratio of the P and R branches of OH A–X (0, 0) bands. The circles show the simulated ratios at different rotational temperatures. The square represents the P/R branch peak ratio of the experimental OH A–X (0, 0) band, yielding an estimate of the rotational temperature of 4300 K. Figure 4(a) shows the simulated OH A–X (0, 0) bands at different rotational temperatures. Figure 4(b) shows the experimental OH spectrum of the gliding arc discharge and the simulated spectrum that was modeled at 4300 K rotational temperature.

Fig. 5
Fig. 5

Dependence of the vibrational temperature on the ratio of the peak intensities of the NO A–X (1, 0) and (0, 1) bands. The circles show the ratios simulated at different rotational temperatures whereas the square represents the one obtained by experiments. A vibrational temperature of 5900 K can be determined by comparing the ratios obtained from experiments and simulations. Figure 5(a) shows the simulated emission spectra of NO A–X at different vibrational temperatures. Figure 5(b) shows the experimental NO A–X spectrum of the gliding arc discharge is shown as an insert, as well as the simulated spectrum that was modeled at 5900 K vibrational temperature.

Fig. 6
Fig. 6

Cross-sectional intensity distribution of the emission intensity of the plasma columns. The images of the two plasma columns are shown in Figs. 3 (a4) and 3(b4), respectively. The FWHM values (0.7 and 0.88 mm, respectively) of the fitted curves are used to represent the width of the plasma columns. The temperature distribution of the two plasma columns is inserted, and the hottest regions with a diameter equal to the width of the plasma column are marked in these images by circles. The average translational temperatures within the marked region are 1100 and 1050 K, respectively.

Tables (1)

Tables Icon

Table 1 Parameters of the gliding arc discharge and methods used for corresponding measurements.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I R =C I 0 Nσ
I R = C I 0 Pσ kT
T t = I a I b I g I b T 0
E N = kV T t LP
δ T t = ( θ I a δ I a ) 2 + ( θ I g δ I g ) 2 + ( θ I b δ I b ) 2
δ E/N = ( θ T t δ T t ) 2 + ( θ L δ L ) 2
7500K T e 9900K

Metrics