Abstract

For a conjugated polymer irradiated by two optical pulses, the whole process of excitation, involving lattice oscillations, oscillations of the energy level structure, and evolution of the electron cloud, is investigated. Localization of the electron cloud appears in the first 100 fs of irradiation, which in turn induces vibrations of lattice of the polymer chain as well as oscillations of the band gap. These oscillations filter the absorption of the external optical field inversely and convert the original optical field to an ultrafast light field whose intensity varies with a certain period. Based on the mechanism, oscillations of the energy level structure, induced by the external excitation, can be designed as an ultrafast response optical convertor that is able to change the external optical pulse into a new effective light field with a certain oscillation period. This helps provide new insight into designing nanostructures for polymeric optoelectronics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical waveguide spectroscopy of a conjugated polymer: poly(p-phenylenevinylene)

K. Ueberhofen, A. Deutesfeld, K. Koynov, and C. Bubeck
J. Opt. Soc. Am. B 16(11) 1921-1935 (1999)

Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching

Mark Andreas Bader, Gerd Marowsky, Ayi Bahtiar, Kaloian Koynov, Christoph Bubeck, Hartwig Tillmann, Hans-Heinrich Hörhold, and Suresh Pereira
J. Opt. Soc. Am. B 19(9) 2250-2262 (2002)

High third-order nonlinear optical susceptibility in new fluorinated poly(p-phenylenevinylene) copolymers measured with the Z-scan technique

T. Cassano, R. Tommasi, F. Babudri, A. Cardone, G. M. Farinola, and F. Naso
Opt. Lett. 27(24) 2176-2178 (2002)

References

  • View by:
  • |
  • |
  • |

  1. K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
    [Crossref]
  2. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
    [Crossref]
  3. J. Nelson, “Organic photovoltaic films,” Curr. Opin. Solid State Mater. Sci. 6(1), 87–95 (2002).
    [Crossref]
  4. Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
    [Crossref]
  5. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
    [Crossref]
  6. C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
    [Crossref] [PubMed]
  7. A. Facchetti, “π-Conjugated polymers for organic electronics and photovoltaic applications,” Chem. Mater. 23(3), 733–758 (2011).
    [Crossref]
  8. C. Piliegoand and M. A. Loi, “Charge transfer state in highly efficient polymer-fullerene bulk heterojunction solar cells,” J. Mater. Chem. 22(10), 4141–4150 (2012).
    [Crossref]
  9. C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem. 14(7), 1077–1086 (2004).
    [Crossref]
  10. A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
    [Crossref] [PubMed]
  11. A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
    [Crossref] [PubMed]
  12. T. Wang and W. L. Chan, “Dynamical localization limiting the coherent transport range of excitons in organic crystals,” J. Phys. Chem. Lett. 5(11), 1812–1818 (2014).
    [Crossref] [PubMed]
  13. W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
    [Crossref] [PubMed]
  14. A. A. Paraecattil and N. Banerji, “Charge separation pathways in a highly efficient polymer: fullerene solar cell material,” J. Am. Chem. Soc. 136(4), 1472–1482 (2014).
    [Crossref] [PubMed]
  15. J. Li, Y. Zhang, and M. Zhang, “The electronic structure and its theoretical simulation of carbon nanotube with finite length. Part II: the energy gap and its oscillation properties of short armchair nanotubes,” Chem. Phys. Lett. 364(3-4), 338–344 (2002).
    [Crossref]
  16. L. Liu, C. S. Jayanthi, H. Guo, and S. Y. Wu, “Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes,” Phys. Rev. B 64, 314–319 (2000).
  17. V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6(12), 2748–2754 (2006).
    [Crossref] [PubMed]
  18. Z. Jiang and Y. Song, “Band gap oscillation and novel transport property in ultrathin chiral graphene nanoribbons,” Physica B 464, 61–67 (2015).
    [Crossref]
  19. L. Yang and J. Guo, “Band gap of strained graphene nanoribbons,” Nano Res. 3(3), 189–199 (2010).
    [Crossref]
  20. D. Sangalli and A. Marini, “Anomalous Aharonov-Bohm Gap Oscillations in Carbon Nanotubes,” Nano Lett. 11(10), 4052–4057 (2011).
    [Crossref] [PubMed]
  21. J. Berashevich and T. Chakraborty, “Tunable band gap and magnetic ordering by adsorption of molecules on graphene,” Phys. Rev. B 80(3), 1132–1136 (2009).
    [Crossref]
  22. E. Rastelli and A. Tassi, “Quantum tunneling gap oscillations of Fe8nanomagnets,” Phys. Rev. B 65(9), 092413 (2002).
    [Crossref]
  23. T. He, Z. S. Hu, J. L. Li, and G. W. Yang, “Surface effect and band-gap oscillation of TiO2 nanowires and nanotubes,” J. Phys. Chem. C 115(28), 13837–13843 (2011).
    [Crossref]
  24. K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, “Bandgap oscillation in polyphenanthrenes,” J. Phys. Chem. B 102(3), 498–506 (1998).
    [Crossref]
  25. B. Kolb and A. M. Kolpak, “Ultrafast band-gap oscillations in iron pyrite,” Phys. Rev. B 88(23), 235208 (2013).
    [Crossref]
  26. N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
    [Crossref] [PubMed]
  27. N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
    [Crossref]
  28. T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
    [Crossref] [PubMed]
  29. H. Y. Choi and M. J. Rice, “Excited polarons in poly(phenylene vinylene) and poly(diacetylene),” Phys. Rev. B Condens. Matter 44(19), 10521–10524 (1991).
    [Crossref] [PubMed]
  30. K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
    [Crossref]

2015 (1)

Z. Jiang and Y. Song, “Band gap oscillation and novel transport property in ultrathin chiral graphene nanoribbons,” Physica B 464, 61–67 (2015).
[Crossref]

2014 (2)

T. Wang and W. L. Chan, “Dynamical localization limiting the coherent transport range of excitons in organic crystals,” J. Phys. Chem. Lett. 5(11), 1812–1818 (2014).
[Crossref] [PubMed]

A. A. Paraecattil and N. Banerji, “Charge separation pathways in a highly efficient polymer: fullerene solar cell material,” J. Am. Chem. Soc. 136(4), 1472–1482 (2014).
[Crossref] [PubMed]

2013 (2)

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

B. Kolb and A. M. Kolpak, “Ultrafast band-gap oscillations in iron pyrite,” Phys. Rev. B 88(23), 235208 (2013).
[Crossref]

2012 (2)

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

C. Piliegoand and M. A. Loi, “Charge transfer state in highly efficient polymer-fullerene bulk heterojunction solar cells,” J. Mater. Chem. 22(10), 4141–4150 (2012).
[Crossref]

2011 (5)

A. Facchetti, “π-Conjugated polymers for organic electronics and photovoltaic applications,” Chem. Mater. 23(3), 733–758 (2011).
[Crossref]

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

T. He, Z. S. Hu, J. L. Li, and G. W. Yang, “Surface effect and band-gap oscillation of TiO2 nanowires and nanotubes,” J. Phys. Chem. C 115(28), 13837–13843 (2011).
[Crossref]

D. Sangalli and A. Marini, “Anomalous Aharonov-Bohm Gap Oscillations in Carbon Nanotubes,” Nano Lett. 11(10), 4052–4057 (2011).
[Crossref] [PubMed]

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

2010 (3)

L. Yang and J. Guo, “Band gap of strained graphene nanoribbons,” Nano Res. 3(3), 189–199 (2010).
[Crossref]

N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
[Crossref] [PubMed]

C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
[Crossref] [PubMed]

2009 (3)

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

J. Berashevich and T. Chakraborty, “Tunable band gap and magnetic ordering by adsorption of molecules on graphene,” Phys. Rev. B 80(3), 1132–1136 (2009).
[Crossref]

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

2007 (2)

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

2006 (1)

V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6(12), 2748–2754 (2006).
[Crossref] [PubMed]

2004 (1)

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem. 14(7), 1077–1086 (2004).
[Crossref]

2002 (3)

J. Nelson, “Organic photovoltaic films,” Curr. Opin. Solid State Mater. Sci. 6(1), 87–95 (2002).
[Crossref]

J. Li, Y. Zhang, and M. Zhang, “The electronic structure and its theoretical simulation of carbon nanotube with finite length. Part II: the energy gap and its oscillation properties of short armchair nanotubes,” Chem. Phys. Lett. 364(3-4), 338–344 (2002).
[Crossref]

E. Rastelli and A. Tassi, “Quantum tunneling gap oscillations of Fe8nanomagnets,” Phys. Rev. B 65(9), 092413 (2002).
[Crossref]

2001 (1)

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

2000 (1)

L. Liu, C. S. Jayanthi, H. Guo, and S. Y. Wu, “Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes,” Phys. Rev. B 64, 314–319 (2000).

1998 (1)

K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, “Bandgap oscillation in polyphenanthrenes,” J. Phys. Chem. B 102(3), 498–506 (1998).
[Crossref]

1991 (1)

H. Y. Choi and M. J. Rice, “Excited polarons in poly(phenylene vinylene) and poly(diacetylene),” Phys. Rev. B Condens. Matter 44(19), 10521–10524 (1991).
[Crossref] [PubMed]

Bakulin, A. A.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Banerji, N.

A. A. Paraecattil and N. Banerji, “Charge separation pathways in a highly efficient polymer: fullerene solar cell material,” J. Am. Chem. Soc. 136(4), 1472–1482 (2014).
[Crossref] [PubMed]

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
[Crossref] [PubMed]

Barone, V.

V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6(12), 2748–2754 (2006).
[Crossref] [PubMed]

Baumgarten, M.

C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
[Crossref] [PubMed]

Beljonne, D.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Berashevich, J.

J. Berashevich and T. Chakraborty, “Tunable band gap and magnetic ordering by adsorption of molecules on graphene,” Phys. Rev. B 80(3), 1132–1136 (2009).
[Crossref]

Bittner, E. R.

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Brabec, C. J.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

Chakraborty, T.

J. Berashevich and T. Chakraborty, “Tunable band gap and magnetic ordering by adsorption of molecules on graphene,” Phys. Rev. B 80(3), 1132–1136 (2009).
[Crossref]

Chan, C. T. L.

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

Chan, W. L.

T. Wang and W. L. Chan, “Dynamical localization limiting the coherent transport range of excitons in organic crystals,” J. Phys. Chem. Lett. 5(11), 1812–1818 (2014).
[Crossref] [PubMed]

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Che, C. M.

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

Choi, H. Y.

H. Y. Choi and M. J. Rice, “Excited polarons in poly(phenylene vinylene) and poly(diacetylene),” Phys. Rev. B Condens. Matter 44(19), 10521–10524 (1991).
[Crossref] [PubMed]

Claudio, G.

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Cornil, J.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Cornil, R. H.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Cowan, S.

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
[Crossref] [PubMed]

Dennler, G.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

Dykstra, T. E.

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Facchetti, A.

A. Facchetti, “π-Conjugated polymers for organic electronics and photovoltaic applications,” Chem. Mater. 23(3), 733–758 (2011).
[Crossref]

Friend, R. H.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Gao, K.

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

Gearba, R.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Gierschner, J.

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Guo, H.

L. Liu, C. S. Jayanthi, H. Guo, and S. Y. Wu, “Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes,” Phys. Rev. B 64, 314–319 (2000).

Guo, J.

L. Yang and J. Guo, “Band gap of strained graphene nanoribbons,” Nano Res. 3(3), 189–199 (2010).
[Crossref]

He, T.

T. He, Z. S. Hu, J. L. Li, and G. W. Yang, “Surface effect and band-gap oscillation of TiO2 nanowires and nanotubes,” J. Phys. Chem. C 115(28), 13837–13843 (2011).
[Crossref]

Heeger, A. J.

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
[Crossref] [PubMed]

Hennebicq, E.

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Hod, O.

V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6(12), 2748–2754 (2006).
[Crossref] [PubMed]

Hu, Z. S.

T. He, Z. S. Hu, J. L. Li, and G. W. Yang, “Surface effect and band-gap oscillation of TiO2 nanowires and nanotubes,” J. Phys. Chem. C 115(28), 13837–13843 (2011).
[Crossref]

Hummelen, J. C.

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

Jailaubekov, A. E.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Jayanthi, C. S.

L. Liu, C. S. Jayanthi, H. Guo, and S. Y. Wu, “Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes,” Phys. Rev. B 64, 314–319 (2000).

Jiang, Z.

Z. Jiang and Y. Song, “Band gap oscillation and novel transport property in ultrathin chiral graphene nanoribbons,” Physica B 464, 61–67 (2015).
[Crossref]

Kaake, L. G.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Knoester, J.

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Kolb, B.

B. Kolb and A. M. Kolpak, “Ultrafast band-gap oscillations in iron pyrite,” Phys. Rev. B 88(23), 235208 (2013).
[Crossref]

Kolpak, A. M.

B. Kolb and A. M. Kolpak, “Ultrafast band-gap oscillations in iron pyrite,” Phys. Rev. B 88(23), 235208 (2013).
[Crossref]

Kwok, W. M.

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

Leclerc, M.

N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
[Crossref] [PubMed]

Leung, K.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Li, C.

C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
[Crossref] [PubMed]

Li, J.

J. Li, Y. Zhang, and M. Zhang, “The electronic structure and its theoretical simulation of carbon nanotube with finite length. Part II: the energy gap and its oscillation properties of short armchair nanotubes,” Chem. Phys. Lett. 364(3-4), 338–344 (2002).
[Crossref]

Li, J. L.

T. He, Z. S. Hu, J. L. Li, and G. W. Yang, “Surface effect and band-gap oscillation of TiO2 nanowires and nanotubes,” J. Phys. Chem. C 115(28), 13837–13843 (2011).
[Crossref]

Li, Y.

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

Liu, D. S.

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

Liu, L.

L. Liu, C. S. Jayanthi, H. Guo, and S. Y. Wu, “Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes,” Phys. Rev. B 64, 314–319 (2000).

Liu, M.

C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
[Crossref] [PubMed]

Liu, X. J.

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

Loi, M. A.

C. Piliegoand and M. A. Loi, “Charge transfer state in highly efficient polymer-fullerene bulk heterojunction solar cells,” J. Mater. Chem. 22(10), 4141–4150 (2012).
[Crossref]

Lu, W.

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

Ma, C.

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

Marini, A.

D. Sangalli and A. Marini, “Anomalous Aharonov-Bohm Gap Oscillations in Carbon Nanotubes,” Nano Lett. 11(10), 4052–4057 (2011).
[Crossref] [PubMed]

Müllen, K.

C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
[Crossref] [PubMed]

Nelson, J.

J. Nelson, “Organic photovoltaic films,” Curr. Opin. Solid State Mater. Sci. 6(1), 87–95 (2002).
[Crossref]

Niedzialek, D.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Paraecattil, A. A.

A. A. Paraecattil and N. Banerji, “Charge separation pathways in a highly efficient polymer: fullerene solar cell material,” J. Am. Chem. Soc. 136(4), 1472–1482 (2014).
[Crossref] [PubMed]

Pavelyev, V. G.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Piliegoand, C.

C. Piliegoand and M. A. Loi, “Charge transfer state in highly efficient polymer-fullerene bulk heterojunction solar cells,” J. Mater. Chem. 22(10), 4141–4150 (2012).
[Crossref]

Pschirer, N. G.

C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
[Crossref] [PubMed]

Pshenichnikov, M. S.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Rao, A.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Rastelli, E.

E. Rastelli and A. Tassi, “Quantum tunneling gap oscillations of Fe8nanomagnets,” Phys. Rev. B 65(9), 092413 (2002).
[Crossref]

Rice, M. J.

H. Y. Choi and M. J. Rice, “Excited polarons in poly(phenylene vinylene) and poly(diacetylene),” Phys. Rev. B Condens. Matter 44(19), 10521–10524 (1991).
[Crossref] [PubMed]

Rossky, P. J.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Sai, N.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Sangalli, D.

D. Sangalli and A. Marini, “Anomalous Aharonov-Bohm Gap Oscillations in Carbon Nanotubes,” Nano Lett. 11(10), 4052–4057 (2011).
[Crossref] [PubMed]

Sariciftci, N. S.

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem. 14(7), 1077–1086 (2004).
[Crossref]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

Scharber, M. C.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

Scholes, G. D.

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

Scuseria, G. E.

V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6(12), 2748–2754 (2006).
[Crossref] [PubMed]

Song, Y.

Z. Jiang and Y. Song, “Band gap oscillation and novel transport property in ultrathin chiral graphene nanoribbons,” Physica B 464, 61–67 (2015).
[Crossref]

Tanaka, K.

K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, “Bandgap oscillation in polyphenanthrenes,” J. Phys. Chem. B 102(3), 498–506 (1998).
[Crossref]

Tassi, A.

E. Rastelli and A. Tassi, “Quantum tunneling gap oscillations of Fe8nanomagnets,” Phys. Rev. B 65(9), 092413 (2002).
[Crossref]

Tritsch, J. R.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

van Loosdrecht, P. H. M.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Vauthey, E.

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
[Crossref] [PubMed]

Wang, T.

T. Wang and W. L. Chan, “Dynamical localization limiting the coherent transport range of excitons in organic crystals,” J. Phys. Chem. Lett. 5(11), 1812–1818 (2014).
[Crossref] [PubMed]

Willard, A. P.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Williams, K. J.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Winder, C.

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem. 14(7), 1077–1086 (2004).
[Crossref]

Wu, S. Y.

L. Liu, C. S. Jayanthi, H. Guo, and S. Y. Wu, “Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes,” Phys. Rev. B 64, 314–319 (2000).

Xie, S. J.

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

Yahara, K.

K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, “Bandgap oscillation in polyphenanthrenes,” J. Phys. Chem. B 102(3), 498–506 (1998).
[Crossref]

Yamabe, T.

K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, “Bandgap oscillation in polyphenanthrenes,” J. Phys. Chem. B 102(3), 498–506 (1998).
[Crossref]

Yang, G. W.

T. He, Z. S. Hu, J. L. Li, and G. W. Yang, “Surface effect and band-gap oscillation of TiO2 nanowires and nanotubes,” J. Phys. Chem. C 115(28), 13837–13843 (2011).
[Crossref]

Yang, L.

L. Yang and J. Guo, “Band gap of strained graphene nanoribbons,” Nano Res. 3(3), 189–199 (2010).
[Crossref]

Yoshizawa, K.

K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, “Bandgap oscillation in polyphenanthrenes,” J. Phys. Chem. B 102(3), 498–506 (1998).
[Crossref]

Zhang, M.

J. Li, Y. Zhang, and M. Zhang, “The electronic structure and its theoretical simulation of carbon nanotube with finite length. Part II: the energy gap and its oscillation properties of short armchair nanotubes,” Chem. Phys. Lett. 364(3-4), 338–344 (2002).
[Crossref]

Zhang, Y.

J. Li, Y. Zhang, and M. Zhang, “The electronic structure and its theoretical simulation of carbon nanotube with finite length. Part II: the energy gap and its oscillation properties of short armchair nanotubes,” Chem. Phys. Lett. 364(3-4), 338–344 (2002).
[Crossref]

Zhu, M. X.

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

Zhu, X. Y.

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Zou, Y.

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

Adv. Funct. Mater. (1)

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

Adv. Mater. (2)

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

Chem. Mater. (1)

A. Facchetti, “π-Conjugated polymers for organic electronics and photovoltaic applications,” Chem. Mater. 23(3), 733–758 (2011).
[Crossref]

Chem. Phys. Lett. (1)

J. Li, Y. Zhang, and M. Zhang, “The electronic structure and its theoretical simulation of carbon nanotube with finite length. Part II: the energy gap and its oscillation properties of short armchair nanotubes,” Chem. Phys. Lett. 364(3-4), 338–344 (2002).
[Crossref]

Chem. Rev. (1)

C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, “Polyphenylene-based materials for organic photovoltaics,” Chem. Rev. 110(11), 6817–6855 (2010).
[Crossref] [PubMed]

Curr. Opin. Solid State Mater. Sci. (1)

J. Nelson, “Organic photovoltaic films,” Curr. Opin. Solid State Mater. Sci. 6(1), 87–95 (2002).
[Crossref]

J. Am. Chem. Soc. (3)

W. Lu, W. M. Kwok, C. Ma, C. T. L. Chan, M. X. Zhu, and C. M. Che, “Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways,” J. Am. Chem. Soc. 133(35), 14120–14135 (2011).
[Crossref] [PubMed]

A. A. Paraecattil and N. Banerji, “Charge separation pathways in a highly efficient polymer: fullerene solar cell material,” J. Am. Chem. Soc. 136(4), 1472–1482 (2014).
[Crossref] [PubMed]

N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, and A. J. Heeger, “Exciton formation, relaxation, and decay in PCDTBT,” J. Am. Chem. Soc. 132(49), 17459–17470 (2010).
[Crossref] [PubMed]

J. Mater. Chem. (2)

C. Piliegoand and M. A. Loi, “Charge transfer state in highly efficient polymer-fullerene bulk heterojunction solar cells,” J. Mater. Chem. 22(10), 4141–4150 (2012).
[Crossref]

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem. 14(7), 1077–1086 (2004).
[Crossref]

J. Phys. Chem. B (2)

K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, “Bandgap oscillation in polyphenanthrenes,” J. Phys. Chem. B 102(3), 498–506 (1998).
[Crossref]

T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, and G. D. Scholes, “Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers,” J. Phys. Chem. B 113(3), 656–667 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

T. He, Z. S. Hu, J. L. Li, and G. W. Yang, “Surface effect and band-gap oscillation of TiO2 nanowires and nanotubes,” J. Phys. Chem. C 115(28), 13837–13843 (2011).
[Crossref]

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Wang and W. L. Chan, “Dynamical localization limiting the coherent transport range of excitons in organic crystals,” J. Phys. Chem. Lett. 5(11), 1812–1818 (2014).
[Crossref] [PubMed]

Nano Lett. (2)

D. Sangalli and A. Marini, “Anomalous Aharonov-Bohm Gap Oscillations in Carbon Nanotubes,” Nano Lett. 11(10), 4052–4057 (2011).
[Crossref] [PubMed]

V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6(12), 2748–2754 (2006).
[Crossref] [PubMed]

Nano Res. (1)

L. Yang and J. Guo, “Band gap of strained graphene nanoribbons,” Nano Res. 3(3), 189–199 (2010).
[Crossref]

Nat. Mater. (1)

A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, “Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics,” Nat. Mater. 12(1), 66–73 (2013).
[Crossref] [PubMed]

Phys. Rev. B (6)

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

L. Liu, C. S. Jayanthi, H. Guo, and S. Y. Wu, “Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes,” Phys. Rev. B 64, 314–319 (2000).

J. Berashevich and T. Chakraborty, “Tunable band gap and magnetic ordering by adsorption of molecules on graphene,” Phys. Rev. B 80(3), 1132–1136 (2009).
[Crossref]

E. Rastelli and A. Tassi, “Quantum tunneling gap oscillations of Fe8nanomagnets,” Phys. Rev. B 65(9), 092413 (2002).
[Crossref]

B. Kolb and A. M. Kolpak, “Ultrafast band-gap oscillations in iron pyrite,” Phys. Rev. B 88(23), 235208 (2013).
[Crossref]

K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, “Charge carrier generation through reexcitations of an exciton in poly(p-phenylenevinylene) molecules,” Phys. Rev. B 75(20), 205412 (2007).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Y. Choi and M. J. Rice, “Excited polarons in poly(phenylene vinylene) and poly(diacetylene),” Phys. Rev. B Condens. Matter 44(19), 10521–10524 (1991).
[Crossref] [PubMed]

Physica B (1)

Z. Jiang and Y. Song, “Band gap oscillation and novel transport property in ultrathin chiral graphene nanoribbons,” Physica B 464, 61–67 (2015).
[Crossref]

Science (1)

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, and R. H. Cornil, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Electronic structure of a conjugated polymer before (A) and after (B) optical excitation.

Fig. 2
Fig. 2

Light intensity vs time forpulse 1 (A) and pulse 2(C), and light intensity vs wavelength forpulse 1 (B) and pulse 2 (D).

Fig. 3
Fig. 3

Localization of the electron in the HOMO induced by the external laser pulse 1 (A) and pulse 2 (B).

Fig. 4
Fig. 4

Lattice energy over 600 fs with pulse 1 (A) and pulse 2 (B).

Fig. 5
Fig. 5

Lattice configuration over 140 fs with pulse 1 (A) and pulse 2 (C); lattice configuration over 1200 fs with pulse 1 (B) and pulse 2 (D).

Fig. 6
Fig. 6

Time-dependent evolution of the difference between the HOMO and LUMO due to excitation from pulse 1 (A) and pulse 2 (B).

Fig. 7
Fig. 7

Time variation of the effective light intensity of pulse 1 (A) and pulse 2 (B).

Fig. 8
Fig. 8

Fourier transform (FT) of the time variation of the effective light intensity of pulse 1(A)/pulse 2(B). FT of the time-dependent evolution of the energy gap due to the excitation by pulse 1(C)/pulse 2(D). FT of the time-dependent evolution of the lattice energy with pulse 1(E)/pulse 2(F).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H= H ep + H ee + H l , H ep = l,s [ t 0 +α( u l+1 u l )+ (1) l t e ]×[ c l+1,s + c l,s +H.c.], H ee =U l n l, n l, +V l,s, s ' n l,s n l+1, s ' , H l = K 2 l ( u l+1 u l ) 2 .
H Φ μ = ε μ Φ μ .
ε μ Z l,μ s = [ U( ρ l s 1 2 ) + V( s' ρ l1 s' + s' ρ l+1 s' 2) ] Z l,μ s [V μ occ Z l,μ s Z l1,μ s + t 0 +α( u l1 u l )+ (1) l1 t e ] Z l1,μ s [V μ occ Z l,μ s Z l+1,μ s + t 0 +α( u l+1 u l )+ (1) l+1 t e ] Z l+1,μ s .
M d 2 u l d t 2 = E tot ({ u l }) u l u l +K(2 u l u l+1 u l1 ).
M d 2 u l d t 2 = μ occ ε μ u l +K(2 u l u l+1 u l1 ),
W du = 4 π 2 3 2 p 2 ρ(ω)δ(ω E u E d ).
γ ud = 4 ( E u E d ) 3 3 4 c 3 p 2 .
d P u dt =( W du γ ud ) P u , P d =n P u ,