Abstract

Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode optical fiber based simultaneously distributed curvature and temperature sensing

Hao Wu, Ming Tang, Meng Wang, Can Zhao, Zhiyong Zhao, Ruoxu Wang, Ruolin Liao, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(11) 12722-12732 (2017)

High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses

Jingdong Zhang, Tao Zhu, Huan Zhou, Shihong Huang, Min Liu, and Wei Huang
Opt. Express 24(24) 27482-27493 (2016)

Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber

Zhiyong Zhao, Yunli Dang, Ming Tang, Li Duan, Meng Wang, Hao Wu, Songnian Fu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 24(22) 25111-25118 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [Crossref] [PubMed]
  2. F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
    [Crossref]
  3. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  4. P. Xu, Y. Dong, D. Zhou, C. Fu, J. Zhang, H. Zhang, Z. Lu, L. Chen, and X. Bao, “1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis,” Appl. Opt. 55(21), 5471–5478 (2016).
    [Crossref] [PubMed]
  5. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
    [Crossref]
  6. M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 212–216 (2010).
    [Crossref]
  7. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  8. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  9. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]
  10. C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
    [Crossref]
  11. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  12. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 meter resolution and 1.2°C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  13. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
    [Crossref] [PubMed]
  14. V. L. Iezzi, S. Loranger, M. Marois, and R. Kashyap, “High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber,” Opt. Lett. 39(4), 857–860 (2014).
    [Crossref] [PubMed]
  15. X. Lu, M. A. Soto, and L. Thévenaz, “MilliKelvin resolution in cryogenic temperature distributed fiber sensing based on coherent Rayleigh scattering,” Proc. SPIE 9157, 91573R (2014).
    [Crossref]
  16. Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P. P. Shum, and D. Liu, “Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber,” Opt. Express 24(22), 25111–25118 (2016).
    [Crossref] [PubMed]
  17. Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42(1), 171–174 (2017).
    [Crossref] [PubMed]
  18. X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express 25(14), 16059–16071 (2017).
    [Crossref]

2017 (2)

2016 (3)

2014 (2)

V. L. Iezzi, S. Loranger, M. Marois, and R. Kashyap, “High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber,” Opt. Lett. 39(4), 857–860 (2014).
[Crossref] [PubMed]

X. Lu, M. A. Soto, and L. Thévenaz, “MilliKelvin resolution in cryogenic temperature distributed fiber sensing based on coherent Rayleigh scattering,” Proc. SPIE 9157, 91573R (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

2010 (3)

2009 (2)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

1997 (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castañon, J. D.

Bao, X.

Bolognini, G.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

Chen, L.

Corredera, P.

Dang, Y.

Di Pasquale, F.

Dong, Y.

Dou, R.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Duan, L.

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Fu, C.

Fu, S.

Gan, L.

Garcia-Ruiz, A.

Gonzalez-Herraez, M.

González-Herráez, M.

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Hogari, K.

Iezzi, V. L.

Imahama, M.

Kashyap, R.

Koyamada, Y.

Kubota, K.

Li, B.

Li, C.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Liu, D.

Loranger, S.

Lu, X.

X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express 25(14), 16059–16071 (2017).
[Crossref]

X. Lu, M. A. Soto, and L. Thévenaz, “MilliKelvin resolution in cryogenic temperature distributed fiber sensing based on coherent Rayleigh scattering,” Proc. SPIE 9157, 91573R (2014).
[Crossref]

Lu, Y.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Lu, Z.

Marois, M.

Martin-Lopez, S.

Martins, H. F.

Mizuno, Y.

Nakamura, K.

Nuño, J.

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Pasquale, F. D.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

Pastor-Graells, J.

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Shum, P.

Shum, P. P.

Soto, M. A.

Tang, M.

Thévenaz, L.

Tong, W.

Wang, F.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Wang, M.

Wei, H.

Wu, H.

Xu, P.

Zhang, H.

Zhang, J.

Zhang, X.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Zhao, Z.

Zhou, D.

Appl. Opt. (2)

Electron. Lett. (1)

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (2)

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (1)

X. Lu, M. A. Soto, and L. Thévenaz, “MilliKelvin resolution in cryogenic temperature distributed fiber sensing based on coherent Rayleigh scattering,” Proc. SPIE 9157, 91573R (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the MCF based SDM hybrid BOTDA and Φ-OTDR system. LD: Laser diode; PC: polarization controller; SOA: semiconductor optical amplifier; MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; PS: polarization switch; Att.: attenuator; PD: photodetector; Fan-in: fan-in coupler; Fan-out: fan-out coupler.

Fig. 2
Fig. 2

The calibration of temperature sensitivity. (a) The measured BFS distribution near the hot-spot at the far end of the sensing fiber with different temperatures. (b) The peak frequency shift of BGS as a function of temperature.

Fig. 3
Fig. 3

(a) The measured BGS along the whole fiber when the fiber section A and B are heated and (b) is the enlarged view around the hot-spots. (c) The calculated R T a T b (f,z) of temperature change for 0.1 °C of section A and 25 °C of section B along the fiber and (d) is the partial magnification of the R T a T b (f,z) around the hot spots.

Fig. 4
Fig. 4

(a) The measured absolute temperature distribution based on BOTDA. The inset shows an enlarged view around fiber section A; (b) The measured temperature change distribution based on Φ-OTDR.

Fig. 5
Fig. 5

(a) The continuous monitoring of temperature around fiber section A as a function of time and distance. (b) The monitored temperature tendency of the nature cooling down process of water.

Fig. 6
Fig. 6

The estimated temperature uncertainty along the fiber of (a) BOTDA sensor and (b) Φ-OTDR sensor.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 n eff V a λ
Δ ν B (z)= C X B ΔX(z)
P(t)= P 1 (t)+ P 2 (t)
P 1 (t)= m=1 L a m 2 exp( 2α c τ m n f ) rect( t τ m W ), τ m =2 n f z m /c
P 2 (t)=2 m=1 L n=m+1 L a m a n cos ϕ mn exp{ α c( τ m + τ n ) n f }rect( t τ m W )rect( t τ n W )
ϕ m,n =4π n f ν( z m z n )/c
R T a T b (f,z)= i=1 N ( P a ( ν i ,z) P a ¯ (z))( P b ( ν i +f,z) P b ¯ (z)) { ( i=1 N ( P a ( ν i ,z) P a ¯ (z)) 2 ) ( i=1 N ( P b ( ν i +f,z) P b ¯ (z)) 2 ) } 0.5
P x ¯ (z)= 1 N i=1 N P x ( ν i ,z) , (x=a,b)
Δν ν 0 -(6.92× 10 6 )×ΔT