Abstract

We present a novel single-shot four-wavelength quantitative phase microscopy (FW-QPM). Four lasers operating at different wavelengths are multiplexed with a pair of dichroic mirrors and a polarization beam splitter in a three-mirror quasi-common-path interferometer. After a single-shot interference pattern is obtained with a monochrome camera, four holograms of different wavelengths were demultiplexed from it in the frequency domain with polarization- and frequency-division multiplexing. Polarization-division demultiplexing scheme uses polarization dependent visibility changes in an interference pattern, and it plays a critical role in making only two interference patterns exist within a single quadrant in the frequency domain. We have used a single-mode optical fiber as a phase object sample and demonstrated that a measured single-shot interference pattern can be successfully demultiplexed into four different interferograms of different wavelengths with our proposed scheme.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA)

Tatsuki Tahara, Toru Kaku, and Yasuhiko Arai
Opt. Express 22(24) 29594-29610 (2014)

Double-field-of-view, quasi-common-path interferometer using Fourier domain multiplexing

Behnam Tayebi, Farnaz Sharif, Mohammad Reza Jafarfard, and Dug Young Kim
Opt. Express 23(20) 26825-26833 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
    [Crossref] [PubMed]
  2. D. Lee, S. Ryu, U. Kim, D. Jung, and C. Joo, “Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging,” Biomed. Opt. Express 6(12), 4912–4922 (2015).
    [Crossref] [PubMed]
  3. M. R. Jafarfard, B. Tayebi, S. Lee, Y.-S. Bae, and D. Y. Kim, “Optimum phase shift for quantitative phase microscopy in volume measurement,” J. Opt. Soc. Am. A 31(11), 2429–2436 (2014).
    [Crossref] [PubMed]
  4. H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
    [Crossref] [PubMed]
  5. C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
    [Crossref] [PubMed]
  6. V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), e16142 (2016).
    [Crossref]
  7. D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
    [Crossref] [PubMed]
  8. R. Gannavarpu, B. Bhaduri, K. Tangella, and G. Popescu, “Spatiotemporal characterization of a fibrin clot using quantitative phase imaging,” PLoS One 9(11), e111381 (2014).
    [Crossref] [PubMed]
  9. C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
    [Crossref] [PubMed]
  10. M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, “Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response,” PLoS One 9(2), e89000 (2014).
    [Crossref] [PubMed]
  11. G. Rajshekhar, B. Bhaduri, C. Edwards, R. Zhou, L. L. Goddard, and G. Popescu, “Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging,” Opt. Express 22(3), 3432–3438 (2014).
    [Crossref] [PubMed]
  12. B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39(19), 5740–5743 (2014).
    [Crossref] [PubMed]
  13. B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23(9), 11264–11271 (2015).
    [Crossref] [PubMed]
  14. Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
    [Crossref]
  15. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15(22), 14591–14600 (2007).
    [Crossref] [PubMed]
  16. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30(20), 2706–2708 (2005).
    [Crossref] [PubMed]
  17. D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
    [Crossref]
  18. M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
    [Crossref] [PubMed]
  19. D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Single shot dual-wavelength digital holography: calibration based on speckle displacements,” Int. J. Optomechatronics 8(4), 326–339 (2014).
    [Crossref]
  20. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45(3), 451–459 (2006).
    [Crossref] [PubMed]
  21. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
    [Crossref] [PubMed]
  22. M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
    [Crossref] [PubMed]
  23. J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
    [Crossref]
  24. T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37(15), 3153–3155 (2012).
    [Crossref] [PubMed]
  25. M. A. Araiza-Esquivel, L. Martínez-León, B. Javidi, P. Andrés, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot effect,” Appl. Opt. 50(7), B96–B101 (2011).
    [Crossref] [PubMed]
  26. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
    [Crossref] [PubMed]
  27. Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
    [Crossref] [PubMed]
  28. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
    [Crossref] [PubMed]
  29. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
    [Crossref] [PubMed]
  30. T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22(24), 29594–29610 (2014).
    [Crossref] [PubMed]
  31. B. Tayebi, F. Sharif, M. R. Jafarfard, and D. Y. Kim, “Double-field-of-view, quasi-common-path interferometer using Fourier domain multiplexing,” Opt. Express 23(20), 26825–26833 (2015).
    [Crossref] [PubMed]
  32. B. Tayebi, W. Kim, B.-J. Yoon, and J.-H. Han, “Real-time triple field of view interferometry for scan-free monitoring of multiple objects,” in IEEE/ASME Transactions on Mechatronics (2017).
  33. G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
    [Crossref] [PubMed]

2016 (2)

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), e16142 (2016).
[Crossref]

2015 (7)

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Lee, S. Ryu, U. Kim, D. Jung, and C. Joo, “Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging,” Biomed. Opt. Express 6(12), 4912–4922 (2015).
[Crossref] [PubMed]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23(9), 11264–11271 (2015).
[Crossref] [PubMed]

J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
[Crossref]

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

B. Tayebi, F. Sharif, M. R. Jafarfard, and D. Y. Kim, “Double-field-of-view, quasi-common-path interferometer using Fourier domain multiplexing,” Opt. Express 23(20), 26825–26833 (2015).
[Crossref] [PubMed]

G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
[Crossref] [PubMed]

2014 (9)

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[Crossref] [PubMed]

T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22(24), 29594–29610 (2014).
[Crossref] [PubMed]

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Single shot dual-wavelength digital holography: calibration based on speckle displacements,” Int. J. Optomechatronics 8(4), 326–339 (2014).
[Crossref]

M. R. Jafarfard, B. Tayebi, S. Lee, Y.-S. Bae, and D. Y. Kim, “Optimum phase shift for quantitative phase microscopy in volume measurement,” J. Opt. Soc. Am. A 31(11), 2429–2436 (2014).
[Crossref] [PubMed]

R. Gannavarpu, B. Bhaduri, K. Tangella, and G. Popescu, “Spatiotemporal characterization of a fibrin clot using quantitative phase imaging,” PLoS One 9(11), e111381 (2014).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
[Crossref] [PubMed]

M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, “Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response,” PLoS One 9(2), e89000 (2014).
[Crossref] [PubMed]

G. Rajshekhar, B. Bhaduri, C. Edwards, R. Zhou, L. L. Goddard, and G. Popescu, “Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging,” Opt. Express 22(3), 3432–3438 (2014).
[Crossref] [PubMed]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39(19), 5740–5743 (2014).
[Crossref] [PubMed]

2013 (1)

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

2012 (5)

2011 (1)

2010 (1)

2008 (2)

2007 (1)

2006 (1)

2005 (1)

2002 (1)

Alfieri, D.

Andrés, P.

Antonopoulos, G. C.

G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
[Crossref] [PubMed]

Arai, Y.

Araiza-Esquivel, M. A.

Arbabi, A.

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

Awatsuji, Y.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Bae, Y. S.

Bae, Y.-S.

Barada, D.

Bergamaschi, A.

M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, “Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response,” PLoS One 9(2), e89000 (2014).
[Crossref] [PubMed]

Bergström, P.

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Single shot dual-wavelength digital holography: calibration based on speckle displacements,” Int. J. Optomechatronics 8(4), 326–339 (2014).
[Crossref]

Bhaduri, B.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

R. Gannavarpu, B. Bhaduri, K. Tangella, and G. Popescu, “Spatiotemporal characterization of a fibrin clot using quantitative phase imaging,” PLoS One 9(11), e111381 (2014).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
[Crossref] [PubMed]

G. Rajshekhar, B. Bhaduri, C. Edwards, R. Zhou, L. L. Goddard, and G. Popescu, “Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging,” Opt. Express 22(3), 3432–3438 (2014).
[Crossref] [PubMed]

H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
[Crossref] [PubMed]

Bianco, V.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), e16142 (2016).
[Crossref]

Bingham, P. R.

Chakraborty, A.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Choi, W.

Dasari, R. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
[Crossref] [PubMed]

De Nicola, S.

Desse, J.-M.

J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
[Crossref]

Ding, H.

Edwards, C.

Feld, M.

Ferraro, P.

Finizio, A.

Fu, D.

Gannavarpu, R.

R. Gannavarpu, B. Bhaduri, K. Tangella, and G. Popescu, “Spatiotemporal characterization of a fibrin clot using quantitative phase imaging,” PLoS One 9(11), e111381 (2014).
[Crossref] [PubMed]

Ganti, R.

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

Gillette, M. U.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Goddard, L. L.

Griffin, B. G.

Grilli, S.

Hällstig, E.

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Single shot dual-wavelength digital holography: calibration based on speckle displacements,” Int. J. Optomechatronics 8(4), 326–339 (2014).
[Crossref]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

Han, J.-H.

B. Tayebi, W. Kim, B.-J. Yoon, and J.-H. Han, “Real-time triple field of view interferometry for scan-free monitoring of multiple objects,” in IEEE/ASME Transactions on Mechatronics (2017).

Har, D.

Hayasaki, Y.

Heisterkamp, A.

G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
[Crossref] [PubMed]

Hillman, T. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

Ito, Y.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Iyer, R.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Jafarfard, M. R.

Jang, J.

Jang, Y.

Javidi, B.

Joo, C.

Jung, D.

Kaku, T.

Kakue, T.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Kang, J. W.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

Kato, J.

Katzenellenbogen, B. S.

M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, “Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response,” PLoS One 9(2), e89000 (2014).
[Crossref] [PubMed]

Khodadad, D.

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Single shot dual-wavelength digital holography: calibration based on speckle displacements,” Int. J. Optomechatronics 8(4), 326–339 (2014).
[Crossref]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

Kiire, T.

Kim, D. Y.

Kim, M. K.

Kim, T.

Kim, U.

Kim, W.

B. Tayebi, W. Kim, B.-J. Yoon, and J.-H. Han, “Real-time triple field of view interferometry for scan-free monitoring of multiple objects,” in IEEE/ASME Transactions on Mechatronics (2017).

Kubota, T.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Lancis, J.

Laporta, P.

Lee, D.

Lee, S.

Lue, N.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

Ma, L.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Mann, C. J.

Martínez-León, L.

Matoba, O.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Matsumura, T.

Memmolo, P.

Meyer, H.

G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
[Crossref] [PubMed]

Miccio, L.

Millet, L.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Mir, M.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, “Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response,” PLoS One 9(2), e89000 (2014).
[Crossref] [PubMed]

Moon, S.

Nguyen, T.

Nishio, K.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Osellame, R.

Paquit, V. C.

Park, Y.

Parshall, D.

Paturzo, M.

Pham, H.

Picart, P.

J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
[Crossref]

Pierattini, G.

Popescu, G.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
[Crossref] [PubMed]

R. Gannavarpu, B. Bhaduri, K. Tangella, and G. Popescu, “Spatiotemporal characterization of a fibrin clot using quantitative phase imaging,” PLoS One 9(11), e111381 (2014).
[Crossref] [PubMed]

M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, “Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response,” PLoS One 9(2), e89000 (2014).
[Crossref] [PubMed]

G. Rajshekhar, B. Bhaduri, C. Edwards, R. Zhou, L. L. Goddard, and G. Popescu, “Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging,” Opt. Express 22(3), 3432–3438 (2014).
[Crossref] [PubMed]

H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
[Crossref] [PubMed]

Prasanth, S.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Rajshekhar, G.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

G. Rajshekhar, B. Bhaduri, C. Edwards, R. Zhou, L. L. Goddard, and G. Popescu, “Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging,” Opt. Express 22(3), 3432–3438 (2014).
[Crossref] [PubMed]

Ripken, T.

G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
[Crossref] [PubMed]

Ryu, S.

Sansone, L.

Sharif, F.

Shimozato, Y.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Shokuh, S. H. H.

Sjödahl, M.

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Single shot dual-wavelength digital holography: calibration based on speckle displacements,” Int. J. Optomechatronics 8(4), 326–339 (2014).
[Crossref]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

Song, Y. S.

Sridharan, S.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Steltner, B.

G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
[Crossref] [PubMed]

Sugisaka, J.

Sung, Y.

Tahara, T.

T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22(24), 29594–29610 (2014).
[Crossref] [PubMed]

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Tajahuerce, E.

Tangella, K.

R. Gannavarpu, B. Bhaduri, K. Tangella, and G. Popescu, “Spatiotemporal characterization of a fibrin clot using quantitative phase imaging,” PLoS One 9(11), e111381 (2014).
[Crossref] [PubMed]

Tayebi, B.

Tobin, K. W.

Tulino, A.

Ura, S.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Wang, R.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Wang, X.

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

Xia, P.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

Yamaguchi, I.

Yaqoob, Z.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
[Crossref] [PubMed]

Yatagai, T.

Yodh, A. G.

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

Yoon, B.-J.

B. Tayebi, W. Kim, B.-J. Yoon, and J.-H. Han, “Real-time triple field of view interferometry for scan-free monitoring of multiple objects,” in IEEE/ASME Transactions on Mechatronics (2017).

Yunker, P. J.

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

Zhou, R.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Int. J. Optomechatronics (1)

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Single shot dual-wavelength digital holography: calibration based on speckle displacements,” Int. J. Optomechatronics 8(4), 326–339 (2014).
[Crossref]

J. Disp. Technol. (1)

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Technol. 8(10), 570–576 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Langmuir (1)

C. Edwards, A. Arbabi, B. Bhaduri, X. Wang, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Langmuir 31(40), 11020–11032 (2015).
[Crossref] [PubMed]

Light Sci. Appl. (1)

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), e16142 (2016).
[Crossref]

Opt. Eng. (1)

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

Opt. Express (8)

P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15(22), 14591–14600 (2007).
[Crossref] [PubMed]

G. Rajshekhar, B. Bhaduri, C. Edwards, R. Zhou, L. L. Goddard, and G. Popescu, “Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging,” Opt. Express 22(3), 3432–3438 (2014).
[Crossref] [PubMed]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23(9), 11264–11271 (2015).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
[Crossref] [PubMed]

T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22(24), 29594–29610 (2014).
[Crossref] [PubMed]

B. Tayebi, F. Sharif, M. R. Jafarfard, and D. Y. Kim, “Double-field-of-view, quasi-common-path interferometer using Fourier domain multiplexing,” Opt. Express 23(20), 26825–26833 (2015).
[Crossref] [PubMed]

Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[Crossref] [PubMed]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
[Crossref]

Opt. Lett. (7)

T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37(15), 3153–3155 (2012).
[Crossref] [PubMed]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[Crossref] [PubMed]

I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
[Crossref] [PubMed]

H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
[Crossref] [PubMed]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39(19), 5740–5743 (2014).
[Crossref] [PubMed]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30(20), 2706–2708 (2005).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
[Crossref] [PubMed]

PLoS One (3)

M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, “Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response,” PLoS One 9(2), e89000 (2014).
[Crossref] [PubMed]

R. Gannavarpu, B. Bhaduri, K. Tangella, and G. Popescu, “Spatiotemporal characterization of a fibrin clot using quantitative phase imaging,” PLoS One 9(11), e111381 (2014).
[Crossref] [PubMed]

G. C. Antonopoulos, B. Steltner, A. Heisterkamp, T. Ripken, and H. Meyer, “Tile-based two-dimensional phase unwrapping for digital holography using a modular framework,” PLoS One 10(11), e0143186 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Other (1)

B. Tayebi, W. Kim, B.-J. Yoon, and J.-H. Han, “Real-time triple field of view interferometry for scan-free monitoring of multiple objects,” in IEEE/ASME Transactions on Mechatronics (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

2D frequency domain of: (a) three-wavelength double-mirror interferometer, (b) four-wavelength double-mirror interferometer, (c) four-wavelength double-reference triple-mirror interferometer, (d) four-wavelength quantitative phase microscope using a color-polarized double-reference triple interferometer.

Fig. 2
Fig. 2

Four-wavelength quantitative phase microscope made with four lasers. LR, LB, LG, and LV represent lasers with red, blue, green, and violet colors, respectively. MO and Mr are mirrors that reflect the object and reference beams, respectively. DM: dichroic mirror, PBS: polarizing beam splitter, M: mirror, S: sample, OL: objective lens, TL: Tube lens, PF: polarization filter, CCD: charge-coupled device.

Fig. 3
Fig. 3

(a) Polarization directions of the four lasers used in our setup. The red and blue lasers are horizontally polarized, while the green and violet lasers are vertically polarized. (b) The configuration of a polarization filter for one object beam and two reference beams. The color of the lasers and the polarization directions of each part of the filter are indicated. (c) The position of three mirrors just after the polarization filter; two mirrors for the two reference beams reflect two clear parts of the sample (without an object), and one mirror for the object beam reflects phase-modulated light by an object. R, G, B, and V indicate red, green, blue, and violet lasers, respectively. The gray arrows indicate the polarization state. MO and Mr are mirrors for the object and reference beams.

Fig. 4
Fig. 4

(a) Raw interferogram data for an optical fiber with 20 µm core size and 125 µm cladding diameter. (b) 2D Fourier-transformed data of the raw interferogram.

Fig. 5
Fig. 5

(a) 2D pseudocolor phase images of the fiber sample for (a) violet, (b) blue, (c) green, and (d) red lasers. The color bar shows the phase in radians, and the white scale bar represents 50 µm. (e) Overlapped cross-sectional phase profiles of the fiber for four different wavelengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I r,V P + I r,G P + I r,B S + I r,R S + I O,V P + I O,G P + I O,B S + I O,R S +2 I r,V P I O,V P cos( q V .x+ φ V ) +2 I r,G P I O,G P cos( q G .x+ φ G )+2 I r,B S I O,B S cos( q B .x+ φ B )+2 I r,R S I O,R S cos( q R .x+ φ R ),
q λ = sin θ λ λ ,
i λ =2 I r,λ n I O,λ n e j( q λ .x+ φ λ ) ,
ϕ λ (x)= 2π λ t(x)Δ n λ (x) ,

Metrics