Abstract

Photoacoustic endoscopy (PAE) is a promising tool for the detection of atherosclerotic plaque. In this work, we propose a novel design of a side-viewing PAE probe based on a synthetic aperture focusing technique (SAFT) to enable high transverse resolution over large depth of focus (DOF) along the radial direction. A point-like ultrasonic detector is used to ensure a wide detection angle and thus a large synthetic aperture for SAFT. We first perform numerical simulation to optimize the PAE probe design, which involves the placement of the point-like detector and the diameter of a reflection rod mirror. Then, experiments are conducted based on the optimized probe design. High transverse resolution of 115–190 µm over large DOF of 3.5 mm along the radial direction is experimentally obtained. The SAFT-based PAE holds promise for endoscopic imaging with a high transverse resolution for both the surface and deep regions of tissue.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic endoscopy with hollow structured lens-focused polyvinylidine fluoride transducer

Jiaying Xiao, Yanan Li, Wentao Jin, Kuang Peng, Ziqiang Zhu, and Bo Wang
Appl. Opt. 55(9) 2301-2305 (2016)

Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging

Guangyao Li, Zhendong Guo, and Sung-Liang Chen
Opt. Express 25(21) 25023-25035 (2017)

Optical-resolution photoacoustic endomicroscopy in vivo

Joon-Mo Yang, Chiye Li, Ruimin Chen, Bin Rao, Junjie Yao, Cheng-Hung Yeh, Amos Danielli, Konstantin Maslov, Qifa Zhou, K. Kirk Shung, and Lihong V. Wang
Biomed. Opt. Express 6(3) 918-932 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
    [Crossref] [PubMed]
  2. J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
    [Crossref] [PubMed]
  3. C. Chen, Y. Zhao, S. Yang, and D. Xing, “Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy,” Biomed. Opt. Express 6(12), 4975–4980 (2015).
    [Crossref] [PubMed]
  4. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
    [Crossref] [PubMed]
  5. B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2001).
    [Crossref]
  6. K. Jansen, A. F. Van Der Steen, H. M. van Beusekom, J.W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
    [Crossref] [PubMed]
  7. X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
    [Crossref] [PubMed]
  8. J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
    [Crossref] [PubMed]
  9. J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
    [Crossref] [PubMed]
  10. J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
    [Crossref] [PubMed]
  11. H. He, G. Wissmeyer, S.V. Ovsepian, A. Buehler, and V. Ntziachristos, “Hybrid optical and acoustic resolution optoacoustic endoscopy,” Opt. Lett. 41(12), 2708–2710 (2016).
    [Crossref] [PubMed]
  12. B. Dong, S. Chen, Z. Zhang, C. Sun, and H. F. Zhang, “Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications,” Opt. Lett. 39(15), 4372–4375 (2014).
    [Crossref] [PubMed]
  13. C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
    [Crossref] [PubMed]
  14. M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
    [Crossref] [PubMed]
  15. D. Cai, Z. Li, and S.-L. Chen, “Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique,” Chin. Opt. Lett. 13(10), 101101 (2015).
    [Crossref]
  16. M. O’Donnell and L. Thomas, “Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 366–380 (1992).
    [Crossref]
  17. X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).
  18. C. Sheaff and S. Ashkenazi, “A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 2135–2138.
  19. E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78990 (2011).
    [Crossref]
  20. P. Morris, A. Hurrell, and P. Beard, “Development of a 50 MHz fabry-perot type fibre-optic hydrophone for the characterisation of medical ultrasound fields,” in Proceedings (Institute of Acoustics, St Albans, 2006), pp. 717–725.
  21. G. Diebold, T. Sun, and M. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384 (1991).
    [Crossref] [PubMed]
  22. S.-L. Chen, T. Ling, and L. J. Guo, “Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging,” J. Biomed. Opt. 16(5), 056001 (2011).
    [Crossref] [PubMed]
  23. M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
    [Crossref] [PubMed]
  24. D. T. Blackstock, Fundamentals of Physical Acoustics (John Wiley & Sons, 2000).
  25. J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
    [Crossref] [PubMed]
  26. T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 93230, 932301 (2015).
  27. T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer micro-ring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
    [Crossref] [PubMed]
  28. C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
    [Crossref]
  29. H. Andresen, S. I. Nikolov, and J. A. Jensen, “Synthetic aperture focusing for a single-element transducer undergoing helical motion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 935–943 (2011).
    [Crossref] [PubMed]

2016 (2)

S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
[Crossref] [PubMed]

H. He, G. Wissmeyer, S.V. Ovsepian, A. Buehler, and V. Ntziachristos, “Hybrid optical and acoustic resolution optoacoustic endoscopy,” Opt. Lett. 41(12), 2708–2710 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (3)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

B. Dong, S. Chen, Z. Zhang, C. Sun, and H. F. Zhang, “Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications,” Opt. Lett. 39(15), 4372–4375 (2014).
[Crossref] [PubMed]

2012 (2)

J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

2011 (6)

K. Jansen, A. F. Van Der Steen, H. M. van Beusekom, J.W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
[Crossref] [PubMed]

X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78990 (2011).
[Crossref]

H. Andresen, S. I. Nikolov, and J. A. Jensen, “Synthetic aperture focusing for a single-element transducer undergoing helical motion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 935–943 (2011).
[Crossref] [PubMed]

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer micro-ring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

S.-L. Chen, T. Ling, and L. J. Guo, “Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging,” J. Biomed. Opt. 16(5), 056001 (2011).
[Crossref] [PubMed]

2009 (1)

2007 (1)

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[Crossref] [PubMed]

2006 (2)

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[Crossref] [PubMed]

2001 (1)

1992 (1)

M. O’Donnell and L. Thomas, “Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 366–380 (1992).
[Crossref]

1991 (1)

G. Diebold, T. Sun, and M. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384 (1991).
[Crossref] [PubMed]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[Crossref] [PubMed]

Allen, T. J.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 93230, 932301 (2015).

Amirian, J.

Amirian, J. H.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[Crossref] [PubMed]

Andresen, H.

H. Andresen, S. I. Nikolov, and J. A. Jensen, “Synthetic aperture focusing for a single-element transducer undergoing helical motion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 935–943 (2011).
[Crossref] [PubMed]

Ashkenazi, S.

C. Sheaff and S. Ashkenazi, “A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 2135–2138.

Bai, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Beard, P.

P. Morris, A. Hurrell, and P. Beard, “Development of a 50 MHz fabry-perot type fibre-optic hydrophone for the characterisation of medical ultrasound fields,” in Proceedings (Institute of Acoustics, St Albans, 2006), pp. 717–725.

Beard, P. C.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 93230, 932301 (2015).

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78990 (2011).
[Crossref]

Blackstock, D. T.

D. T. Blackstock, Fundamentals of Physical Acoustics (John Wiley & Sons, 2000).

Buehler, A.

Cai, D.

Cai, X.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Cannata, J. M.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Chen, C.

Chen, J.

S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
[Crossref] [PubMed]

Chen, R.

Chen, S.

Chen, S.-L.

D. Cai, Z. Li, and S.-L. Chen, “Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique,” Chin. Opt. Lett. 13(10), 101101 (2015).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer micro-ring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

S.-L. Chen, T. Ling, and L. J. Guo, “Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging,” J. Biomed. Opt. 16(5), 056001 (2011).
[Crossref] [PubMed]

Chen, X.

X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).

Danielli, A.

Diebold, G.

G. Diebold, T. Sun, and M. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384 (1991).
[Crossref] [PubMed]

Dong, B.

Emelianov, S.

Emelianov, S. Y.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[Crossref] [PubMed]

Favazza, C.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref] [PubMed]

Gong, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Guo, L. J.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer micro-ring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

S.-L. Chen, T. Ling, and L. J. Guo, “Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging,” J. Biomed. Opt. 16(5), 056001 (2011).
[Crossref] [PubMed]

Hau, W.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

He, H.

Hu, Z.

Hurrell, A.

P. Morris, A. Hurrell, and P. Beard, “Development of a 50 MHz fabry-perot type fibre-optic hydrophone for the characterisation of medical ultrasound fields,” in Proceedings (Institute of Acoustics, St Albans, 2006), pp. 717–725.

Jansen, K.

Jensen, J. A.

H. Andresen, S. I. Nikolov, and J. A. Jensen, “Synthetic aperture focusing for a single-element transducer undergoing helical motion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 935–943 (2011).
[Crossref] [PubMed]

Kelly, S.

S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
[Crossref] [PubMed]

Khan, M.

G. Diebold, T. Sun, and M. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384 (1991).
[Crossref] [PubMed]

Li, C.

Li, M.

X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).

Li, M.-L.

Li, P.-C.

Li, Y.

X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).

Li, Z.

Liao, C.-K.

Lin, R.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Ling, T.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer micro-ring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

S.-L. Chen, T. Ling, and L. J. Guo, “Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging,” J. Biomed. Opt. 16(5), 056001 (2011).
[Crossref] [PubMed]

Litovsky, S. H.

Liu, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Maslov, K.

Morris, P.

P. Morris, A. Hurrell, and P. Beard, “Development of a 50 MHz fabry-perot type fibre-optic hydrophone for the characterisation of medical ultrasound fields,” in Proceedings (Institute of Acoustics, St Albans, 2006), pp. 717–725.

Nikolov, S. I.

H. Andresen, S. I. Nikolov, and J. A. Jensen, “Synthetic aperture focusing for a single-element transducer undergoing helical motion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 935–943 (2011).
[Crossref] [PubMed]

Ntziachristos, V.

O’Donnell, M.

M. O’Donnell and L. Thomas, “Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 366–380 (1992).
[Crossref]

Oosterhuis, J.W.

Ovsepian, S.V.

Rao, B.

Ritter, T. A.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Samant, P.

S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
[Crossref] [PubMed]

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[Crossref] [PubMed]

Sheaff, C.

C. Sheaff and S. Ashkenazi, “A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 2135–2138.

Shung, K. K.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref] [PubMed]

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Smalling, R.

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[Crossref] [PubMed]

Song, L.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Stoica, G.

Su, J. L.

Sun, C.

Sun, T.

G. Diebold, T. Sun, and M. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384 (1991).
[Crossref] [PubMed]

Tang, S.

S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
[Crossref] [PubMed]

Thomas, L.

M. O’Donnell and L. Thomas, “Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 366–380 (1992).
[Crossref]

van Beusekom, H. M.

Van Der Steen, A. F.

van Soest, G.

Wang, B.

Wang, L. V.

Wang, Y.

X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).

Williams, J. A.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Wissmeyer, G.

Xiang, L.

S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
[Crossref] [PubMed]

Xing, D.

Xu, M.

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[Crossref] [PubMed]

Xu, Y.

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[Crossref] [PubMed]

Yang, H.-C.

Yang, J.-M.

Yang, S.

Yao, J.

Yeh, C.-H.

Yu, D.

X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).

Zeng, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Zhang, E.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 93230, 932301 (2015).

Zhang, E. Z.

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78990 (2011).
[Crossref]

Zhang, H. F.

Zhang, Z.

Zhao, Y.

Zheng, H.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Zheng, J.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Zhou, Q.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref] [PubMed]

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Zou, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Appl. Phys. Lett. (1)

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer micro-ring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Chin. Opt. Lett. (1)

IEEE Trans. Biomed. Eng. (1)

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (4)

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[Crossref] [PubMed]

M. O’Donnell and L. Thomas, “Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 366–380 (1992).
[Crossref]

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

H. Andresen, S. I. Nikolov, and J. A. Jensen, “Synthetic aperture focusing for a single-element transducer undergoing helical motion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 935–943 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S.-L. Chen, T. Ling, and L. J. Guo, “Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging,” J. Biomed. Opt. 16(5), 056001 (2011).
[Crossref] [PubMed]

J. X-Ray Sci. Technol. (1)

X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011).

Nat. Med. (1)

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

G. Diebold, T. Sun, and M. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384 (1991).
[Crossref] [PubMed]

PloS one (1)

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014).
[Crossref] [PubMed]

Proc. SPIE (2)

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78990 (2011).
[Crossref]

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 93230, 932301 (2015).

Other (3)

D. T. Blackstock, Fundamentals of Physical Acoustics (John Wiley & Sons, 2000).

P. Morris, A. Hurrell, and P. Beard, “Development of a 50 MHz fabry-perot type fibre-optic hydrophone for the characterisation of medical ultrasound fields,” in Proceedings (Institute of Acoustics, St Albans, 2006), pp. 717–725.

C. Sheaff and S. Ashkenazi, “A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 2135–2138.

Supplementary Material (2)

NameDescription
» Visualization 1       Animations of B-mode images for the original image
» Visualization 2       Animations of B-mode images for the SAFT+CF image

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the SAFT-based PAE probe. The rod mirror reflecting the detection pattern of ultrasonic detector is rotated to perform circumferential scanning. The diameter of the rod mirror is d and the scanning radius of the mirrored detector is R. (b) Equivalent scanning path. The overlapped detection patterns of the mirrored detectors facilitate SAFT implementation.

Fig. 2
Fig. 2

Numerical simulation of transverse resolutions by SAFT+CF for (a) d = 1 mm, (b) d = 2 mm, (c) d = 3 mm, and (d) d = 4 mm. For each case of d, scanning radii R = 1–5 mm are numerically simulated.

Fig. 3
Fig. 3

Photograph of the PAE probe with the optimized design.

Fig. 4
Fig. 4

(a) FWHM radial resolution in SAFT+CF image is 90 μm. (b) Frequency response of the FP ultrasonic detector used in experiment.

Fig. 5
Fig. 5

Transverse resolution calibration: (a) Original image. (b) SAFT+CF image. (c) Transverse resolutions vs. radial distance for experimental SAFT+CF (black curve) and simulated SAFT+CF (red curve) images.

Fig. 6
Fig. 6

Cross-sectional B-mode image at z = 2 mm for the (a) original and (b) SAFT+CF images, respectively. Volumetric rendering images of the human hair phantom for the (c) original and (d) SAFT+CF images, respectively. Animations of B-mode images along the z axis are available as supplementary visualization for the original image (see Visualization 1) and the SAFT+CF image (see Visualization 2).

Tables (1)

Tables Icon

Table 1 Transverse resolution and imaging depth range of different PAE schemes

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 p ( r , t ) 1 c 2 2 t 2 p ( r , t ) = β C p t H ( r , t ) .
p δ ( r 0 , t ) = A 0 U ( a | r v s t | ) ( r v s t ) / ( 2 r ) ,
p ( r 0 , t ) = p δ ( r 0 , t ) I ( t ) L ( t ) D ( t )
S S A F T ( t ) = i = 0 N 1 S ( i , t Δ t i ) ,
C F ( t ) = | i = 0 N 1 S ( i , t Δ t i ) | 2 N i = 0 N 1 | S ( i , t Δ t i ) | 2 .
d < 3.7 mm .
d ( θ ) = J 1 ( k a sin ( θ ) ) / ( k a sin ( θ ) ) ,

Metrics