Abstract

We identify a new regime where laser pulses represent the dynamics of rectangular-shaped wave packets (RSWPs) in a passively mode-locked Tm3+-doped fiber laser. In this regime the laser consists of a train of mode-locked pulses underneath a rectangular-shaped envelope. The density of pulses within a RSWP can be as high as 2.8 GHz, which is consistent with cavity fundamental repetition rate. The effects of small-signal gain value, pulse repetition rate, and net dispersion on the RSWP performance are analyzed. These results imply that this new regime particularly favors high-repetition-rate ultrafast lasers. We further reproduce the phenomenon from using numerical simulations and understand such behavior by referring to the nonlinear dynamics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-repetition-rate ultrafast fiber lasers

Huihui Cheng, Wenlong Wang, Yi Zhou, Tian Qiao, Wei Lin, Yuankai Guo, Shanhui Xu, and Zhongmin Yang
Opt. Express 26(13) 16411-16421 (2018)

Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers

Yunxiu Ma, Xiushan Zhu, Luyun Yang, Minghong Tong, Robert A. Norwood, Huai Wei, Yingbo Chu, Haiqing Li, Nengli Dai, Jinggang Peng, Jinyan Li, and Nasser Peyghambarian
Opt. Express 27(10) 14487-14504 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
    [Crossref] [PubMed]
  2. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
    [Crossref] [PubMed]
  3. M. Pang, W. He, and P. St J. Russell, “Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber,” Opt. Lett. 41(19), 4601–4604 (2016).
    [Crossref] [PubMed]
  4. J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  5. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [Crossref] [PubMed]
  6. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
    [Crossref] [PubMed]
  7. R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
    [Crossref] [PubMed]
  8. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
    [Crossref]
  9. J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
    [Crossref]
  10. H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2017).
  11. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
    [Crossref] [PubMed]
  12. M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009).
    [Crossref] [PubMed]
  13. Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012).
    [Crossref] [PubMed]
  14. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  15. S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
    [Crossref]
  16. C. Bao, X. Xiao, and C. Yang, “Soliton rains in a normal dispersion fiber laser with dual-filter,” Opt. Lett. 38(11), 1875–1877 (2013).
    [Crossref] [PubMed]
  17. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
    [Crossref]
  18. Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
    [Crossref]
  19. X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
    [Crossref] [PubMed]
  20. H. Yu, J. Zhang, Y. Qi, L. Zhang, S. Zou, L. Wang, and X. Lin, “85-W burst-mode pulse fiber amplifier based on a Q-switched mode-locked laser with output energy 0.5 mJ per burst pulse,” J. Lightwave Technol. 33(9), 1761–1765 (2015).
    [Crossref]
  21. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
    [Crossref] [PubMed]
  22. H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
    [Crossref]
  23. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]
  24. H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
    [Crossref]
  25. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
    [Crossref]
  26. H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
    [Crossref] [PubMed]
  27. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
    [Crossref]

2017 (1)

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2017).

2016 (3)

2015 (2)

2014 (3)

2013 (1)

2012 (2)

2011 (2)

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

2010 (2)

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

2009 (2)

2008 (3)

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

2007 (1)

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

1999 (1)

1995 (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

1991 (1)

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
[Crossref] [PubMed]

1976 (1)

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

Abdelalim, M.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Amrani, F.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

Anis, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Bao, C.

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Brovelli, L. R.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Calasso, I. G.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Chang, G.

Chavez-Pirson, A.

Chen, H.-W.

Chen, X.

Cheng, H.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2017).

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

Chouli, S.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

Du, J.

Grelu, P.

Haboucha, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Haldeman, A.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

Hao, Y.

Haus, H. A.

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

He, W.

Hönninger, C.

Jackson, J.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

Jeong, Y.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kärtner, F. X.

Keller, U.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kim, J.

Komarov, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Kopf, D.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kotb, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Kwon, Y.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Leblond, H.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Lee, S.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Li, H.

Li, X.

Lin, W.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2017).

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

Lin, X.

Luo, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2017).

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Malomed, B. A.

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
[Crossref] [PubMed]

Martinez, A.

Massera, J.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

McFerran, J. J.

Meng, Y.

Morier-Genoud, F.

Moser, M.

Nenadovic, L.

Newbury, N. R.

Nguyen, D.

Olivier, M.

Pang, M.

Park, M. J.

Paschotta, R.

Perrott, M. H.

Petit, L.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

Piché, M.

Qi, Y.

Qian, Q.

Qiao, T.

Richardson, K.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

Rivero-Baleine, C.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

Salhi, M.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Sanchez, F.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Schlager, J. B.

St J. Russell, P.

Swann, W. C.

Tang, G.

Thapa, R.

Vazquez-Zuniga, L. A.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Wang, J.

Wang, L.

Wen, X.

Xiao, X.

Xu, S.

Yamashita, S.

Yang, C.

Yang, Z.

Yu, H.

Zhang, J.

Zhang, L.

Zhang, S.

Zong, J.

Zou, S.

Appl. Phys. B (1)

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2017).

J. Am. Ceram. Soc. (1)

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94(1), 130–136 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Methods (1)

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

Opt. Eng. (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Opt. Express (8)

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
[Crossref] [PubMed]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009).
[Crossref] [PubMed]

Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Opt. Lett. (5)

Phys. Rev. A (3)

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
[Crossref] [PubMed]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the RSWP operation in an ultra-short Tm3+-doped BGG fiber laser. Left inset: Photograph of highly reflective dielectric films coated on a fiber ferrule. Right inset: Semiconductor saturable absorber mirror placed onto the end of a fiber ferrule.
Fig. 2
Fig. 2 (a) Experimental elevations of the representative RSWP train with a time period of 35.36 µs; (b) magnified view of a portion of the RSWP of (a), showing the pulses within a packet having a fundamental repetition rate of 2.8 GHz. When measuring the data, the pump power of the 793 nm LD was fixed at 40 mW.
Fig. 3
Fig. 3 Experimental elevations (blue curves) and theoretical envelopes (red curves) of the RSWP operation at a pump power of the 793 nm laser diode of (a) 40, (b) 69, and (c) 102 mW.
Fig. 4
Fig. 4 (a) Experimental optical spectrum of RSWP operation measured in a wide wavelength range of 120 nm. (b) Measured radio-frequency spectrum.
Fig. 5
Fig. 5 Calculated profiles of the evolving processes of pulse energy against different values of small-signal gain coefficient g0 = (a) 480, (b) 550, (c) 620, and (d) 665.
Fig. 6
Fig. 6 Calculated requirements for CW mode-locking operation on minimum small-signal gain coefficient g0 as a function of fundamental pulse repetition rate. The RSWP operation will occur once the g0 in the laser cavity is less than the corresponding values.
Fig. 7
Fig. 7 Calculated temporal profiles of the evolving processes of pulse energy as a function of cavity net dispersion. During the calculation, the other system parameters were kept constant.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u i (z,T) z =i β 2 2 2 u i ( z,T ) T 2 +iγ | u i ( z,T ) | 2 u i ( z,T )+g( τ ) u i ( z,T )+ g(τ) Ω 2 2 u i (z,T) T 2
dg(z,τ) dτ = g( z,τ ) g 0 T g g(z,τ) E g u i (z,T) 2 T r
q( T )= q 0 1+P( L C ,T ) T a / E a
u i ( 0,T )= 1 q l u i+1 ( 2 L c ,T )

Metrics