Abstract

A real-time distributed optical fiber vibration sensing prototype based on the Sagnac interference in conjunction with the optical time domain reflectometry (OTDR) was developed. The sensing mechanism for single- and multi-points vibrations along the sensing fiber was analyzed theoretically and demonstrated experimentally. The experimental results show excellent agreement with the theoretical models. It is verified that single-point vibration induces a significantly abrupt and monotonous power change in the corresponding position of OTDR trace. As to multi-points vibrations, the detection of the following vibration is influenced by all previous ones. However, if the distance between the adjacent two vibrations is larger than half of the input optical pulse width, abrupt power changes induced by them are separate and still monotonous. A time-shifting differential module was developed and carried out to convert vibration-induced power changes to pulses. Consequently, vibrations can be located accurately by measuring peak or valley positions of the vibration-induced pulses. It is demonstrated that when the width and peak power of input optical pulse are set to 1 μs and 35 mW, respectively, the position error is less than ± 0.5 m in a sensing range of more than 16 km, with the spatial resolution of ~110 m.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution

Tao Zhu, Qian He, Xianghui Xiao, and Xiaoyi Bao
Opt. Express 21(3) 2953-2963 (2013)

Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing

Haijun He, Li-Yang Shao, Bin Luo, Zonglei Li, Xihua Zou, Zhiyong Zhang, Wei Pan, and Lianshan Yan
Opt. Express 24(5) 4842-4855 (2016)

High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses

Jingdong Zhang, Tao Zhu, Huan Zhou, Shihong Huang, Min Liu, and Wei Huang
Opt. Express 24(24) 27482-27493 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
    [Crossref] [PubMed]
  2. R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications,” Sensors (Basel) 15(8), 18666–18713 (2015).
    [Crossref] [PubMed]
  3. P. R. Hoffman and M. G. Kuzyk, “Position determination of an acoustic burst along a Sagnac interferometer,” J. Lightwave Technol. 22(2), 494–498 (2004).
    [Crossref]
  4. X. Fang, “Fiber-optic distributed sensing by a two-loop Sagnac interferometer,” Opt. Lett. 21(6), 444–446 (1996).
    [Crossref] [PubMed]
  5. S. J. Russell, K. R. C. Brady, and J. P. Dakin, “Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer,” J. Lightwave Technol. 19(2), 205–213 (2001).
    [Crossref]
  6. S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15(6), 972–976 (1997).
    [Crossref]
  7. A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach-Zehnder and Modified sagnac-distributed fiber-optic impact sensor,” Appl. Opt. 37(16), 3432–3437 (1998).
    [Crossref] [PubMed]
  8. S. Xie, Q. Zou, L. Wang, M. Zhang, Y. Li, and Y. Liao, “Positioning error prediction theory for dual Mach–Zehnder interferometric vibration sensor,” J. Lightwave Technol. 29(3), 362–368 (2011).
    [Crossref]
  9. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt. 50(22), 4333–4338 (2011).
    [Crossref] [PubMed]
  10. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  11. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46(11), 1968–1971 (2007).
    [Crossref] [PubMed]
  12. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  13. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [Crossref] [PubMed]
  14. F. Peng, H. Wu, X.-H. Jia, Y.-J. Rao, Z.-N. Wang, and Z.-P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  15. C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), 1–3.
    [Crossref]
  16. C. Pan, H. Ye, M. Li, S. Zhao, and X. Sun, “Compensation method for blind segments of distributed optical-fiber vibration sensor based on differential-coherent OTDR,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.21.
    [Crossref]
  17. B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
    [Crossref]
  18. J. Beller, Fiber Optic Test and Measurement (Prentice Hall, 1998), Chap. 11.

2015 (1)

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications,” Sensors (Basel) 15(8), 18666–18713 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2007 (1)

2006 (1)

B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

2005 (1)

2004 (1)

2001 (1)

1998 (1)

1997 (1)

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15(6), 972–976 (1997).
[Crossref]

1996 (1)

Bao, X.

Brady, K. R. C.

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Choi, K. N.

Chtcherbakov, A. A.

A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach-Zehnder and Modified sagnac-distributed fiber-optic impact sensor,” Appl. Opt. 37(16), 3432–3437 (1998).
[Crossref] [PubMed]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15(6), 972–976 (1997).
[Crossref]

Culshaw, B.

B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

Dakin, J. P.

Di Sante, R.

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications,” Sensors (Basel) 15(8), 18666–18713 (2015).
[Crossref] [PubMed]

Fang, X.

Guo, H.

He, Q.

Hoffman, P. R.

Hong, X.

Jia, X.-H.

Juarez, J. C.

Kuzyk, M. G.

Li, Y.

Liao, Y.

Liu, F.

Lu, Y.

Maier, E. W.

Pan, C.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), 1–3.
[Crossref]

Peng, F.

Peng, Z.-P.

Rao, Y.-J.

Russell, S. J.

Spammer, S. J.

A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach-Zehnder and Modified sagnac-distributed fiber-optic impact sensor,” Appl. Opt. 37(16), 3432–3437 (1998).
[Crossref] [PubMed]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15(6), 972–976 (1997).
[Crossref]

Sun, X.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), 1–3.
[Crossref]

Swart, P. L.

A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach-Zehnder and Modified sagnac-distributed fiber-optic impact sensor,” Appl. Opt. 37(16), 3432–3437 (1998).
[Crossref] [PubMed]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15(6), 972–976 (1997).
[Crossref]

Taylor, H. F.

Wang, L.

Wang, Z.-N.

Wu, H.

Wu, J.

Xiao, X.

Xie, S.

Xu, K.

Yu, B.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), 1–3.
[Crossref]

Zhang, M.

Zhu, H.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), 1–3.
[Crossref]

Zhu, T.

Zhu, Z.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), 1–3.
[Crossref]

Zou, Q.

Zuo, C.

Appl. Opt. (3)

J. Lightwave Technol. (6)

Meas. Sci. Technol. (1)

B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sensors (Basel) (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications,” Sensors (Basel) 15(8), 18666–18713 (2015).
[Crossref] [PubMed]

Other (3)

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), 1–3.
[Crossref]

C. Pan, H. Ye, M. Li, S. Zhao, and X. Sun, “Compensation method for blind segments of distributed optical-fiber vibration sensor based on differential-coherent OTDR,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.21.
[Crossref]

J. Beller, Fiber Optic Test and Measurement (Prentice Hall, 1998), Chap. 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Scheme of the DOFVS based on the Sagnac interference in conjunction with the OTDR; SLD: super luminescent diode; C1, C2: 2 × 2 directional couplers; LT: delay fiber.
Fig. 2
Fig. 2 (a) Coherent OTDR traces with and without vibration detected at the output ports A and B (Values of the parameters are from the book [18]). (b) Coherent OTDR traces with 2-points vibrations detected at the output port A.
Fig. 3
Fig. 3 (a) Composite OTDR trace with 2-points vibrations. (b) Differential results of composite OTDR trace for different delay times.
Fig. 4
Fig. 4 Experimental setup for the DOFVS based on the Sagnac interferometer in conjunction with the OTDR; LS1: the first sensing fiber coil; LS2: the second sensing fiber coil; LS3: the third sensing fiber coil, PZT: piezo-electric transducer.
Fig. 5
Fig. 5 OTDR traces with and without vibration acting: (a) the OTDR traces detected at the output port A; (b) the OTDR traces detected at the output port B; (c) the output signals of the balanced detector (the composite OTDR traces).
Fig. 6
Fig. 6 Time-shifting differential results of the composite OTDR traces when vibration acting for different delay times, TS, of 0.5 μs, 1 μs, and 2 μs.
Fig. 7
Fig. 7 (a) Variations of amplitude of the vibration-induced pulse amplitude and the SNR with delay time, TS, for different optical input pulse widths of 1 μs and 2 μs. (b) Variations of the vibration-induced pulse width with delay time, TS, for different optical input pulse widths of 1 μs and 2 μs.
Fig. 8
Fig. 8 Detection of the vibration at ~6150 m: (a) 400 adjacent composite OTDR traces; (b) the time-shifting differential results of 400 adjacent composite OTDR traces (TS = 0.1 μs).
Fig. 9
Fig. 9 (a) Time response of the proposed DOFVS to vibration produced by the PZT driven by sine wave. (b) Frequency response of the sensor to vibration produced by the PZT driven by sine waves with different frequencies.
Fig. 10
Fig. 10 Detection of 2-points vibrations whose distance is 110 m: (a) composite OTDR traces with the abrupt increase and decrease at the second vibration position and their differential results; (b) differential results of 400 adjacent composite OTDR traces.
Fig. 11
Fig. 11 Variations of the detected vibration position with the observation time for different averaging times of 8, 16 and 32.
Fig. 12
Fig. 12 Detection of 2-points vibrations with the distance of ~16 km.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ t V = 2( l R l V ) v g ,
Δ t V (l) (l l V ) v g .
Δ t M = l T v g .
Δφ(l)={ 0 l< l V φ( l V v g )+φ[ l V v g +Δ t V (l)]φ( l V v g +Δ t M )φ[ l V v g +Δ t M +Δ t V (l)] l l V .
Δφ(l)Δφ( l V )=2[φ( l V v g )φ( l V v g +Δ t M )].
P AC (l)={ 1 4 A S P 0 [1exp(2αl)]exp(α l T ) l w 2 1 8 A S P 0 [2exp(αw)2]exp[α(2l+ l T )] w 2 <l l v , 1 8 A S P 0 {2exp(αw){{1cos[Δφ(l)]}exp[2α(l l V )] +{1+cos[Δφ(l)]}}}exp[α(2l+ l T )] l v <l l v + w 2 1 8 A S P 0 [exp(αw)1]{1+cos[Δφ(l)]}exp[α(2l+ l T )] l v + w 2 <l l S 1 8 A S P 0 {exp(aw)exp[2a(l l S )]}{1+cos[Δφ(l)]}exp[α(2l+ l T )] l S <l l S + w 2
A S =S α S α P 0 exp(αw)
P BC (l)={ 0 l l V 1 8 A S P 0 [exp(2α l V )exp(2αl)]{1cos[Δφ(l)]}exp(α l T ) l V <l l V + w 2 . 1 8 A S P 0 [exp(αw)1]{1cos[Δφ(l)]}exp[α(2l+ l T )] l V + w 2 <l l S 1 8 A S P 0 {exp(aw)exp[2a(l l S )]}{1cos[Δφ(l)]}exp[α(2l+ l T )] l S <l l S + w 2
P AC (l)={ 1 4 A S P 0 [1exp(2αl)]exp(α l T ) l w 2 1 8 A S P 0 [exp(aw)1]{1+cos[( j=0 i Δ φ j (l) )]} exp[a(2l+ l T )] w 2 <l l V1 (i=0) or l Vi + w 2 <l l Vi+1 (1i<N1) or l> l VN (i=N) 1 8 A S P 0 {{1+cos[ j=0 i1 Δ φ j (l) ]}exp(aw){{ cos[ j=0 i1 Δ φ j (l) ]cos[ j=0 i Δ φ j (l) ]}exp[2a(l l Vi )] +{1+cos[ j=0 i Δ φ j (l) ]}}}exp[a(2l+ l T )] l Vi <l l Vi + w 2 (1iN) 1 8 A S P 0 {exp(aw)exp[2a(l l S )]}{1+cos[( j=0 i Δ φ j (l) )]} exp[a(2l+ l T )] l S <l l S + w 2
P BC (l)={ 1 8 A S P 0 [exp(aw)1]{1 cos[ j=0 i Δ φ j (l) }exp[a(2l+ l T )] l l V1 (i=0) or l Vi + w 2 <l l Vi+1 (1i<N1) or l> l VN (i=N) 1 8 A S P 0 {{{1cos[ j=0 i1 Δ φ j (l) ]}exp(aw) {1cos[ j=0 i Δ φ j (l) ]}}exp(2al){cos[ j=0 i Δ φ j (l) ] cos[ j=0 i1 Δ φ j (l) ]}exp(2a l Vi )}exp(a l T ) l Vi <l l Vi + w 2 (1iN) 1 8 A S P 0 {exp(aw)exp[2a(l l S )]}{1 cos[ j=0 i Δ φ j (l) }exp[a(2l+ l T )] l S <l l S + w 2 ,
V(l)P(l)= k A P A-C (l) k B P B-C (l),
DV(l)=V(l+ T S v g 2 )V(l),
R S = T S v g +w 2 = v g 2 ( T S + T w ),

Metrics