Abstract

We report the first observation of stress induced birefringence in air plasma sprayed (APS) thermal barrier coatings (TBCs) using a reflection based polariscope and GHz illumination. Strain optic coefficients of (−0.0133 ± 0.0102) × 10−9 and (−0.0190 ± 0.0043) × 10−9 were measured for yttria-stabilized zirconia (YSZ) APS coatings of the same thickness deposited on substrates of 3 mm and 1 mm mild steel. The reflection measurement approach was validated by additional measurements of the stress optic coefficient of bulk yttria-partially stabilized zirconia (YTZP) ceramic that were in agreement with previously reported transmission measurements. The ultimate application of this technique is the prediction of remaining life in TBCs.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement

David A. Luo, Enrique T. Barraza, and Michael W. Kudenov
Appl. Opt. 56(35) 9770-9778 (2017)

Modeling luminescence behavior for phosphor thermometry applied to doped thermal barrier coating configurations

Quentin Fouliard, Sandip Haldar, Ranajay Ghosh, and Seetha Raghavan
Appl. Opt. 58(13) D68-D75 (2019)

Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings

Chia-Chu Chen, Dong-Joon Lee, Tresa Pollock, and John F. Whitaker
Opt. Express 18(4) 3477-3486 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. P. Padture, M. Gell, and E. H. Jordan, “Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science 296(5566), 280–284 (2002).
    [Crossref] [PubMed]
  2. D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull. 37(10), 891–898 (2012).
    [Crossref]
  3. R. Darolia, “Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects,” Int. Mater. Rev. 58(6), 315–348 (2013).
    [Crossref]
  4. C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, “Enviornmental degradation of thermal-barrier coatings by molten deposits,” MRS Bull. 37(10), 932–941 (2012).
    [Crossref]
  5. S. Sampaht, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull. 37(10), 903–910 (2012).
    [Crossref]
  6. K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, “Failure modes in plasma-sprayed thermal barrier coatings,” Mater. Sci. Eng. A 342(1-2), 120–130 (2003).
    [Crossref]
  7. A. Rabiei and A. G. Evans, “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings,” Acta Mater. 48(15), 3963–3976 (2000).
    [Crossref]
  8. A. N. Khan, J. Lu, and H. Liao, “Effect of residual stresses on air plasma sprayed thermal barrier coatings,” Surf. Coat. Tech. 168(2-3), 291–299 (2003).
    [Crossref]
  9. L. Fu, K. A. Khor, H. W. Ng, and T. N. Leo, “Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings,” Surf. Coat. Tech. 130(2-3), 233–239 (2000).
    [Crossref]
  10. X. Q. Ma, S. Cho, and M. Takemoto, “Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests,” Surf. Coat. Tech. 139(1), 55–62 (2001).
    [Crossref]
  11. L. Yang, Y. C. Zhou, W. G. Mao, and C. Lu, “Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings,” Appl. Phys. Lett. 93(23), 231906 (2008).
    [Crossref]
  12. R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
    [Crossref]
  13. R. J. L. Steenbakker, J. P. Feist, R. G. Wellman, and J. R. Nicholls, “Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures,” J. Eng. Gas Turbines Power 131(4), 041301 (2009).
    [Crossref]
  14. X. Wang, A. Atkinson, L. Chirivì, and J. R. Nicholls, “Evolution of stress morphology in thermal barrier coatings,” Surf. Coat. Tech. 204(23), 3851–3857 (2010).
    [Crossref]
  15. W. A. Ellingson, R. J. Visher, R. Sl Lipanovich, and C. M. Deemer, “Optical NDE Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64(1), 45–51 (2006).
  16. D. Zhu and R. A. Miller, “Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings,” Surf. Coat. Tech. 108–109, 114–120 (1998).
    [Crossref]
  17. V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
    [Crossref]
  18. B. Rogé, A. Fahr, J. S. R. Guguère, and K. I. McRae, “Nondestructive Measurement of Porosity in Thermal Barrier Coatings,” J. Therm. Spray Technol. 12(4), 530–535 (2003).
    [Crossref]
  19. K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
    [Crossref]
  20. C. C. Chen, D. J. Lee, T. Pollock, and J. F. Whitaker, “Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings,” Opt. Express 18(4), 3477–3486 (2010).
    [Crossref] [PubMed]
  21. R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
    [Crossref]
  22. P. Schemmel, G. Diederich, and A. J. Moore, “Direct stress optic coefficients for YTZP ceramic and PTFE at GHz frequencies,” Opt. Express 24(8), 8110–8119 (2016).
    [Crossref] [PubMed]
  23. K. Ramesh, Digital Photoelasticity: Advanced Techniques and Applications (Springer, 2000).
  24. M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity - Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
    [Crossref]
  25. R. B. Pipes and J. L. Rose, “Strain-optic law for a certain class of birefringent composites,” Exp. Mech. 14(9), 355–360 (1974).
    [Crossref]
  26. N. F. Borrelli and R. A. Miller, “Determination of the individual strain-optic coefficients of glass by an ultrasonic technique,” Appl. Opt. 7(5), 745–750 (1968).
    [Crossref] [PubMed]
  27. L. Hua, Y. Song, J. Huang, X. Lan, Y. Li, and H. Xiao, “Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing,” Appl. Opt. 54(24), 7181–7187 (2015).
    [Crossref] [PubMed]
  28. S. E. A. Bayoumi and E. K. Franko, “Fundamental relations in photoplasticity,” Br. J. Appl. Phys. 4(10), 306–310 (1953).
    [Crossref]
  29. E. Hecht, Optics 4th Edition (Addison Wesley, 2001).
  30. J. F. Lodenquai, “Determination of absorption of thin films coefficients,” Sol. Energy 53, 209–210 (1994).
    [Crossref]

2016 (1)

2015 (1)

2013 (1)

R. Darolia, “Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects,” Int. Mater. Rev. 58(6), 315–348 (2013).
[Crossref]

2012 (4)

C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, “Enviornmental degradation of thermal-barrier coatings by molten deposits,” MRS Bull. 37(10), 932–941 (2012).
[Crossref]

S. Sampaht, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull. 37(10), 903–910 (2012).
[Crossref]

D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull. 37(10), 891–898 (2012).
[Crossref]

R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
[Crossref]

2010 (3)

X. Wang, A. Atkinson, L. Chirivì, and J. R. Nicholls, “Evolution of stress morphology in thermal barrier coatings,” Surf. Coat. Tech. 204(23), 3851–3857 (2010).
[Crossref]

R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
[Crossref]

C. C. Chen, D. J. Lee, T. Pollock, and J. F. Whitaker, “Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings,” Opt. Express 18(4), 3477–3486 (2010).
[Crossref] [PubMed]

2009 (1)

R. J. L. Steenbakker, J. P. Feist, R. G. Wellman, and J. R. Nicholls, “Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures,” J. Eng. Gas Turbines Power 131(4), 041301 (2009).
[Crossref]

2008 (2)

L. Yang, Y. C. Zhou, W. G. Mao, and C. Lu, “Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings,” Appl. Phys. Lett. 93(23), 231906 (2008).
[Crossref]

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity - Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

2006 (1)

W. A. Ellingson, R. J. Visher, R. Sl Lipanovich, and C. M. Deemer, “Optical NDE Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64(1), 45–51 (2006).

2003 (3)

B. Rogé, A. Fahr, J. S. R. Guguère, and K. I. McRae, “Nondestructive Measurement of Porosity in Thermal Barrier Coatings,” J. Therm. Spray Technol. 12(4), 530–535 (2003).
[Crossref]

A. N. Khan, J. Lu, and H. Liao, “Effect of residual stresses on air plasma sprayed thermal barrier coatings,” Surf. Coat. Tech. 168(2-3), 291–299 (2003).
[Crossref]

K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, “Failure modes in plasma-sprayed thermal barrier coatings,” Mater. Sci. Eng. A 342(1-2), 120–130 (2003).
[Crossref]

2002 (1)

N. P. Padture, M. Gell, and E. H. Jordan, “Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science 296(5566), 280–284 (2002).
[Crossref] [PubMed]

2001 (1)

X. Q. Ma, S. Cho, and M. Takemoto, “Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests,” Surf. Coat. Tech. 139(1), 55–62 (2001).
[Crossref]

2000 (2)

L. Fu, K. A. Khor, H. W. Ng, and T. N. Leo, “Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings,” Surf. Coat. Tech. 130(2-3), 233–239 (2000).
[Crossref]

A. Rabiei and A. G. Evans, “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings,” Acta Mater. 48(15), 3963–3976 (2000).
[Crossref]

1999 (2)

K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
[Crossref]

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
[Crossref]

1998 (1)

D. Zhu and R. A. Miller, “Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings,” Surf. Coat. Tech. 108–109, 114–120 (1998).
[Crossref]

1994 (1)

J. F. Lodenquai, “Determination of absorption of thin films coefficients,” Sol. Energy 53, 209–210 (1994).
[Crossref]

1974 (1)

R. B. Pipes and J. L. Rose, “Strain-optic law for a certain class of birefringent composites,” Exp. Mech. 14(9), 355–360 (1974).
[Crossref]

1968 (1)

1953 (1)

S. E. A. Bayoumi and E. K. Franko, “Fundamental relations in photoplasticity,” Br. J. Appl. Phys. 4(10), 306–310 (1953).
[Crossref]

Andritschky, M.

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
[Crossref]

Atkinson, A.

X. Wang, A. Atkinson, L. Chirivì, and J. R. Nicholls, “Evolution of stress morphology in thermal barrier coatings,” Surf. Coat. Tech. 204(23), 3851–3857 (2010).
[Crossref]

Bayoumi, S. E. A.

S. E. A. Bayoumi and E. K. Franko, “Fundamental relations in photoplasticity,” Br. J. Appl. Phys. 4(10), 306–310 (1953).
[Crossref]

Borrelli, N. F.

Buchkremer, H. P.

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
[Crossref]

Chen, C. C.

Chirivì, L.

X. Wang, A. Atkinson, L. Chirivì, and J. R. Nicholls, “Evolution of stress morphology in thermal barrier coatings,” Surf. Coat. Tech. 204(23), 3851–3857 (2010).
[Crossref]

Cho, S.

X. Q. Ma, S. Cho, and M. Takemoto, “Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests,” Surf. Coat. Tech. 139(1), 55–62 (2001).
[Crossref]

Clarke, D. R.

D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull. 37(10), 891–898 (2012).
[Crossref]

Darolia, R.

R. Darolia, “Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects,” Int. Mater. Rev. 58(6), 315–348 (2013).
[Crossref]

Deemer, C. M.

W. A. Ellingson, R. J. Visher, R. Sl Lipanovich, and C. M. Deemer, “Optical NDE Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64(1), 45–51 (2006).

Diederich, G.

Ellingson, W. A.

W. A. Ellingson, R. J. Visher, R. Sl Lipanovich, and C. M. Deemer, “Optical NDE Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64(1), 45–51 (2006).

Evans, A. G.

A. Rabiei and A. G. Evans, “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings,” Acta Mater. 48(15), 3963–3976 (2000).
[Crossref]

Fahr, A.

B. Rogé, A. Fahr, J. S. R. Guguère, and K. I. McRae, “Nondestructive Measurement of Porosity in Thermal Barrier Coatings,” J. Therm. Spray Technol. 12(4), 530–535 (2003).
[Crossref]

Feist, J. P.

R. J. L. Steenbakker, J. P. Feist, R. G. Wellman, and J. R. Nicholls, “Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures,” J. Eng. Gas Turbines Power 131(4), 041301 (2009).
[Crossref]

Fischer, W.

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
[Crossref]

Franko, E. K.

S. E. A. Bayoumi and E. K. Franko, “Fundamental relations in photoplasticity,” Br. J. Appl. Phys. 4(10), 306–310 (1953).
[Crossref]

Fu, L.

L. Fu, K. A. Khor, H. W. Ng, and T. N. Leo, “Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings,” Surf. Coat. Tech. 130(2-3), 233–239 (2000).
[Crossref]

Gell, M.

K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, “Failure modes in plasma-sprayed thermal barrier coatings,” Mater. Sci. Eng. A 342(1-2), 120–130 (2003).
[Crossref]

N. P. Padture, M. Gell, and E. H. Jordan, “Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science 296(5566), 280–284 (2002).
[Crossref] [PubMed]

Guguère, J. S. R.

B. Rogé, A. Fahr, J. S. R. Guguère, and K. I. McRae, “Nondestructive Measurement of Porosity in Thermal Barrier Coatings,” J. Therm. Spray Technol. 12(4), 530–535 (2003).
[Crossref]

Hasimoto, H.

K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
[Crossref]

Hua, L.

Huang, J.

Hutchinson, J. W.

C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, “Enviornmental degradation of thermal-barrier coatings by molten deposits,” MRS Bull. 37(10), 932–941 (2012).
[Crossref]

Jarligo, M. O.

S. Sampaht, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull. 37(10), 903–910 (2012).
[Crossref]

R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
[Crossref]

Johnson, C. A.

C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, “Enviornmental degradation of thermal-barrier coatings by molten deposits,” MRS Bull. 37(10), 932–941 (2012).
[Crossref]

Jordan, E. H.

K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, “Failure modes in plasma-sprayed thermal barrier coatings,” Mater. Sci. Eng. A 342(1-2), 120–130 (2003).
[Crossref]

N. P. Padture, M. Gell, and E. H. Jordan, “Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science 296(5566), 280–284 (2002).
[Crossref] [PubMed]

Kagawa, Y.

R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
[Crossref]

Khan, A. N.

A. N. Khan, J. Lu, and H. Liao, “Effect of residual stresses on air plasma sprayed thermal barrier coatings,” Surf. Coat. Tech. 168(2-3), 291–299 (2003).
[Crossref]

Khor, K. A.

L. Fu, K. A. Khor, H. W. Ng, and T. N. Leo, “Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings,” Surf. Coat. Tech. 130(2-3), 233–239 (2000).
[Crossref]

Kuroda, S.

S. Sampaht, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull. 37(10), 903–910 (2012).
[Crossref]

Lan, X.

Lee, D. J.

Leo, T. N.

L. Fu, K. A. Khor, H. W. Ng, and T. N. Leo, “Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings,” Surf. Coat. Tech. 130(2-3), 233–239 (2000).
[Crossref]

Levi, C. G.

C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, “Enviornmental degradation of thermal-barrier coatings by molten deposits,” MRS Bull. 37(10), 932–941 (2012).
[Crossref]

Li, Y.

Liao, H.

A. N. Khan, J. Lu, and H. Liao, “Effect of residual stresses on air plasma sprayed thermal barrier coatings,” Surf. Coat. Tech. 168(2-3), 291–299 (2003).
[Crossref]

Lodenquai, J. F.

J. F. Lodenquai, “Determination of absorption of thin films coefficients,” Sol. Energy 53, 209–210 (1994).
[Crossref]

Lu, C.

L. Yang, Y. C. Zhou, W. G. Mao, and C. Lu, “Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings,” Appl. Phys. Lett. 93(23), 231906 (2008).
[Crossref]

Lu, J.

A. N. Khan, J. Lu, and H. Liao, “Effect of residual stresses on air plasma sprayed thermal barrier coatings,” Surf. Coat. Tech. 168(2-3), 291–299 (2003).
[Crossref]

Ma, X. Q.

X. Q. Ma, S. Cho, and M. Takemoto, “Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests,” Surf. Coat. Tech. 139(1), 55–62 (2001).
[Crossref]

Mack, D. E.

R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
[Crossref]

Mao, W. G.

L. Yang, Y. C. Zhou, W. G. Mao, and C. Lu, “Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings,” Appl. Phys. Lett. 93(23), 231906 (2008).
[Crossref]

McRae, K. I.

B. Rogé, A. Fahr, J. S. R. Guguère, and K. I. McRae, “Nondestructive Measurement of Porosity in Thermal Barrier Coatings,” J. Therm. Spray Technol. 12(4), 530–535 (2003).
[Crossref]

Miller, R. A.

D. Zhu and R. A. Miller, “Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings,” Surf. Coat. Tech. 108–109, 114–120 (1998).
[Crossref]

N. F. Borrelli and R. A. Miller, “Determination of the individual strain-optic coefficients of glass by an ultrasonic technique,” Appl. Opt. 7(5), 745–750 (1968).
[Crossref] [PubMed]

Minkov, D.

K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
[Crossref]

Moore, A. J.

Ng, H. W.

L. Fu, K. A. Khor, H. W. Ng, and T. N. Leo, “Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings,” Surf. Coat. Tech. 130(2-3), 233–239 (2000).
[Crossref]

Nicholls, J. R.

X. Wang, A. Atkinson, L. Chirivì, and J. R. Nicholls, “Evolution of stress morphology in thermal barrier coatings,” Surf. Coat. Tech. 204(23), 3851–3857 (2010).
[Crossref]

R. J. L. Steenbakker, J. P. Feist, R. G. Wellman, and J. R. Nicholls, “Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures,” J. Eng. Gas Turbines Power 131(4), 041301 (2009).
[Crossref]

Oechsner, M.

D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull. 37(10), 891–898 (2012).
[Crossref]

Ogawa, K.

K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
[Crossref]

Padture, N. P.

D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull. 37(10), 891–898 (2012).
[Crossref]

K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, “Failure modes in plasma-sprayed thermal barrier coatings,” Mater. Sci. Eng. A 342(1-2), 120–130 (2003).
[Crossref]

N. P. Padture, M. Gell, and E. H. Jordan, “Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science 296(5566), 280–284 (2002).
[Crossref] [PubMed]

Pipes, R. B.

R. B. Pipes and J. L. Rose, “Strain-optic law for a certain class of birefringent composites,” Exp. Mech. 14(9), 355–360 (1974).
[Crossref]

Pollock, T.

Rabiei, A.

A. Rabiei and A. G. Evans, “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings,” Acta Mater. 48(15), 3963–3976 (2000).
[Crossref]

Ramesh, K.

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity - Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

Ramji, M.

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity - Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

Rogé, B.

B. Rogé, A. Fahr, J. S. R. Guguère, and K. I. McRae, “Nondestructive Measurement of Porosity in Thermal Barrier Coatings,” J. Therm. Spray Technol. 12(4), 530–535 (2003).
[Crossref]

Rose, J. L.

R. B. Pipes and J. L. Rose, “Strain-optic law for a certain class of birefringent composites,” Exp. Mech. 14(9), 355–360 (1974).
[Crossref]

Sampaht, S.

S. Sampaht, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull. 37(10), 903–910 (2012).
[Crossref]

Sato, M.

K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
[Crossref]

Schemmel, P.

Schlichting, K. W.

K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, “Failure modes in plasma-sprayed thermal barrier coatings,” Mater. Sci. Eng. A 342(1-2), 120–130 (2003).
[Crossref]

Schulz, U.

S. Sampaht, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull. 37(10), 903–910 (2012).
[Crossref]

Shoji, T.

K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
[Crossref]

Sl Lipanovich, R.

W. A. Ellingson, R. J. Visher, R. Sl Lipanovich, and C. M. Deemer, “Optical NDE Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64(1), 45–51 (2006).

Song, Y.

Steenbakker, R. J. L.

R. J. L. Steenbakker, J. P. Feist, R. G. Wellman, and J. R. Nicholls, “Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures,” J. Eng. Gas Turbines Power 131(4), 041301 (2009).
[Crossref]

Steinke, T.

R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
[Crossref]

Stöver, D.

R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
[Crossref]

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
[Crossref]

Subramanian, R.

R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
[Crossref]

Takemoto, M.

X. Q. Ma, S. Cho, and M. Takemoto, “Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests,” Surf. Coat. Tech. 139(1), 55–62 (2001).
[Crossref]

Teixeira, V.

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
[Crossref]

Vaßen, R.

R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
[Crossref]

R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
[Crossref]

Vidal-Sétif, M. H.

C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, “Enviornmental degradation of thermal-barrier coatings by molten deposits,” MRS Bull. 37(10), 932–941 (2012).
[Crossref]

Visher, R. J.

W. A. Ellingson, R. J. Visher, R. Sl Lipanovich, and C. M. Deemer, “Optical NDE Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64(1), 45–51 (2006).

Wang, X.

X. Wang, A. Atkinson, L. Chirivì, and J. R. Nicholls, “Evolution of stress morphology in thermal barrier coatings,” Surf. Coat. Tech. 204(23), 3851–3857 (2010).
[Crossref]

Wellman, R. G.

R. J. L. Steenbakker, J. P. Feist, R. G. Wellman, and J. R. Nicholls, “Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures,” J. Eng. Gas Turbines Power 131(4), 041301 (2009).
[Crossref]

Whitaker, J. F.

Xiao, H.

Yang, L.

L. Yang, Y. C. Zhou, W. G. Mao, and C. Lu, “Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings,” Appl. Phys. Lett. 93(23), 231906 (2008).
[Crossref]

Zhou, Y. C.

L. Yang, Y. C. Zhou, W. G. Mao, and C. Lu, “Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings,” Appl. Phys. Lett. 93(23), 231906 (2008).
[Crossref]

Zhu, D.

R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
[Crossref]

D. Zhu and R. A. Miller, “Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings,” Surf. Coat. Tech. 108–109, 114–120 (1998).
[Crossref]

Zombo, P.

R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
[Crossref]

Acta Mater. (1)

A. Rabiei and A. G. Evans, “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings,” Acta Mater. 48(15), 3963–3976 (2000).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Yang, Y. C. Zhou, W. G. Mao, and C. Lu, “Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings,” Appl. Phys. Lett. 93(23), 231906 (2008).
[Crossref]

Br. J. Appl. Phys. (1)

S. E. A. Bayoumi and E. K. Franko, “Fundamental relations in photoplasticity,” Br. J. Appl. Phys. 4(10), 306–310 (1953).
[Crossref]

Exp. Mech. (1)

R. B. Pipes and J. L. Rose, “Strain-optic law for a certain class of birefringent composites,” Exp. Mech. 14(9), 355–360 (1974).
[Crossref]

Int. Mater. Rev. (1)

R. Darolia, “Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects,” Int. Mater. Rev. 58(6), 315–348 (2013).
[Crossref]

J. Eng. Gas Turbines Power (1)

R. J. L. Steenbakker, J. P. Feist, R. G. Wellman, and J. R. Nicholls, “Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures,” J. Eng. Gas Turbines Power 131(4), 041301 (2009).
[Crossref]

J. Mater. Process. Technol. (1)

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, and D. Stöver, “Analysis of residual stresses in thermal barrier coatings,” J. Mater. Process. Technol. 92–93, 209–216 (1999).
[Crossref]

J. Therm. Spray Technol. (1)

B. Rogé, A. Fahr, J. S. R. Guguère, and K. I. McRae, “Nondestructive Measurement of Porosity in Thermal Barrier Coatings,” J. Therm. Spray Technol. 12(4), 530–535 (2003).
[Crossref]

Mater. Eval. (1)

W. A. Ellingson, R. J. Visher, R. Sl Lipanovich, and C. M. Deemer, “Optical NDE Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64(1), 45–51 (2006).

Mater. Sci. Eng. A (1)

K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, “Failure modes in plasma-sprayed thermal barrier coatings,” Mater. Sci. Eng. A 342(1-2), 120–130 (2003).
[Crossref]

MRS Bull. (4)

R. Vaßen, Y. Kagawa, R. Subramanian, P. Zombo, and D. Zhu, “Testing and evaluation of thermal-barrier coatings,” MRS Bull. 37(10), 911–941 (2012).
[Crossref]

C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, “Enviornmental degradation of thermal-barrier coatings by molten deposits,” MRS Bull. 37(10), 932–941 (2012).
[Crossref]

S. Sampaht, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull. 37(10), 903–910 (2012).
[Crossref]

D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull. 37(10), 891–898 (2012).
[Crossref]

NDT Int. (1)

K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hasimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT Int. 32(3), 177–185 (1999).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity - Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

Science (1)

N. P. Padture, M. Gell, and E. H. Jordan, “Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science 296(5566), 280–284 (2002).
[Crossref] [PubMed]

Sol. Energy (1)

J. F. Lodenquai, “Determination of absorption of thin films coefficients,” Sol. Energy 53, 209–210 (1994).
[Crossref]

Surf. Coat. Tech. (6)

D. Zhu and R. A. Miller, “Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings,” Surf. Coat. Tech. 108–109, 114–120 (1998).
[Crossref]

A. N. Khan, J. Lu, and H. Liao, “Effect of residual stresses on air plasma sprayed thermal barrier coatings,” Surf. Coat. Tech. 168(2-3), 291–299 (2003).
[Crossref]

L. Fu, K. A. Khor, H. W. Ng, and T. N. Leo, “Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings,” Surf. Coat. Tech. 130(2-3), 233–239 (2000).
[Crossref]

X. Q. Ma, S. Cho, and M. Takemoto, “Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests,” Surf. Coat. Tech. 139(1), 55–62 (2001).
[Crossref]

R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview of advanced thermal barrier coatings,” Surf. Coat. Tech. 205(4), 938–942 (2010).
[Crossref]

X. Wang, A. Atkinson, L. Chirivì, and J. R. Nicholls, “Evolution of stress morphology in thermal barrier coatings,” Surf. Coat. Tech. 204(23), 3851–3857 (2010).
[Crossref]

Other (2)

K. Ramesh, Digital Photoelasticity: Advanced Techniques and Applications (Springer, 2000).

E. Hecht, Optics 4th Edition (Addison Wesley, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scanning electron microscope image of an air plasma sprayed (APS) thermal barrier coating. The thermally grown oxide (TGO) develops between the bond coat and the ceramic top coat.
Fig. 2
Fig. 2 (a) Schematic of the reflection polariscope. Source (S), detector (D), plano-convex lens (L), polarizer (P) and analyser (A). (b) Deben tensile stage with dogbone specimen. The polariser (P) and the mount for the analyzer (A) can be seen on the left and right hand sides respectively of the specimen, both tilted with respect to the optical axis to reduce standing wave interference.
Fig. 3
Fig. 3 Dogbone specimen with YSZ thermal barrier coating.
Fig. 4
Fig. 4 Normalized frequency spectrum for (a) bulk YTZP specimen and (b) a YSZ thermal barrier coated specimen loaded at 50 N. The black dots indicate the experimentally measured normalized power and the blue line is the fit of the Fresnel equation appropriate for each case.
Fig. 5
Fig. 5 (a) Single slab dielectric and standard Fresnel coefficients for bulk material. (b) Single slab dielectric with revised Fresnel coefficients for a coating on a reflective surface.
Fig. 6
Fig. 6 (a) Measured refractive index versus applied stress for bulk YTZP (b) Offset corrected refractive index versus applied stress. (c) Stress optic coefficients for bulk YTZP using constant and variable sample thickness in the analysis.
Fig. 7
Fig. 7 Measured refractive index versus applied strain for YSZ TBCs. (a) Thick substrate (3 mm) and (b) thin substrate (1 mm). Offset corrected refractive index versus applied strain for (c) thick and (d) thin substrate specimens. The coating thickness is the same for each specimen.
Fig. 8
Fig. 8 A comparison of the stress optic coefficient for APS YSZ measured on thick and thin substrates.

Tables (1)

Tables Icon

Table 1 Comparison of stress optic coefficient values for YTZP

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ n 1 = c 1 Δ σ 1
Δ n 1 = b 1 Δ ε 1
R= ρ 1 + ρ 2 e 2iL 1+ ρ 1 ρ 2 e 2iL
L= 2π n ˜ ( t 0 +t ) λ
t= t 0 ( 1cosθ ) cosθ
θ= sin 1 ( sinθ n air n ˜ )
ρ 1 = cosθ ( n ˜ / n air ) 2 sin θ 2 cosθ+ ( n ˜ / n air ) 2 sin θ 2 .
ρ 2 = cosθ ( n air / n ˜ ) 2 sinθ 2 cosθ+ ( n air / n ˜ ) 2 sinθ 2 .
ρ 2 = τ 1 =1+ ρ 1 τ 2 =0

Metrics