Abstract

A time-division Fourier transform imaging spectropolarimeter (FTISP) for acquiring spatial, spectral, and polarized information is presented. The FTISP employs two ferroelectric liquid crystals (FLCs) and a Wollaston interferometer. The fast axes of the FLCs are controlled to switch quickly without mechanical movement, enabling the polarization state analyzer (PSA) to modulate the full set of Stokes parameters rapidly. The interferometer combines a Wollaston prism with a retroreflector, enabling high interference modulation and facilitating optical alignment. The optimal design for the FLC-PSA and Wollaston interferometer, and the Fourier transform recovery for the polarized interferogram, are presented in detail. To verify the proposed FTISP, laboratory and outdoor experiments were conducted, and the experimental results demonstrate that the proposed FTISP offers much promise for spectropolarimetric measurement with the advantages of fast speed, high spectral resolution, and high signal-to-noise ratio.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tests of a compact static Fourier-transform imaging spectropolarimeter

Jie Li, Bo Gao, Chun Qi, Jingping Zhu, and Xun Hou
Opt. Express 22(11) 13014-13021 (2014)

Low crosstalk polarization-difference channeled imaging spectropolarimeter using double-Wollaston prism

Qiwei Li, Fang Lu, Xiaobin Wang, and Changjiang Zhu
Opt. Express 27(8) 11734-11747 (2019)

Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator

Xin Meng, Jianxin Li, Huaqing Song, and Rihong Zhu
Appl. Opt. 53(24) 5275-5282 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. J. Denes, M. Gottlieb, B. Kaminsky, and D. F. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8–18 (1998).
    [Crossref]
  2. A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
    [Crossref]
  3. S. Jones, F. Iannarilli, and P. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12(26), 6559–6573 (2004).
    [Crossref] [PubMed]
  4. D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
    [Crossref]
  5. N. Hagen, E. L. Dereniak, and D. T. Sass, “Visible snapshot imaging spectro-polaimeter,” Proc. SPIE 5888, 588810 (2005).
    [Crossref]
  6. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  7. R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
    [Crossref]
  8. N. Gupta and D. R. Suhre, “Acousto-optic tunable filter imaging spectrometer with full Stokes polarimetric capability,” Appl. Opt. 46(14), 2632–2637 (2007).
    [Crossref] [PubMed]
  9. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
    [Crossref] [PubMed]
  10. R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
    [Crossref]
  11. J. Kim and M. J. Escuti, “Demonstration of polarization grating imaging spectropolarimeter (PGIS),” Proc. SPIE 7672, 767208 (2010).
    [Crossref]
  12. T. Mu, C. Zhang, C. Jia, and W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20(16), 18194–18201 (2012).
    [Crossref] [PubMed]
  13. T. H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Appl. Opt. 52(10), 2153–2161 (2013).
    [Crossref] [PubMed]
  14. X. Meng, J. Li, D. Liu, and R. Zhu, “Fourier transform imaging spectropolarimeter using simultaneous polarization modulation,” Opt. Lett. 38(5), 778–780 (2013).
    [Crossref] [PubMed]
  15. T. H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).
    [Crossref] [PubMed]
  16. J. S. Tyo and T. S. Turner., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. 40(9), 1450–1458 (2001).
    [Crossref] [PubMed]
  17. X. Meng, J. Li, H. Song, and R. Zhu, “Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator,” Appl. Opt. 53(24), 5275–5282 (2014).
    [Crossref] [PubMed]
  18. X. Meng, J. Li, T. Xu, D. Liu, and R. Zhu, “High throughput full Stokes Fourier transform imaging spectropolarimetry,” Opt. Express 21(26), 32071–32085 (2013).
    [Crossref] [PubMed]
  19. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
    [Crossref] [PubMed]
  20. J. Li, J. Zhu, and H. Wu, “Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett. 35(22), 3784–3786 (2010).
    [Crossref] [PubMed]
  21. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
    [Crossref] [PubMed]
  22. C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
    [Crossref] [PubMed]
  23. D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2011).
  24. C. Bai, J. Li, Y. Shen, and J. Zhou, “Birefringent Fourier transform imaging spectrometer with a rotating retroreflector,” Opt. Lett. 41(15), 3647–3650 (2016).
    [Crossref] [PubMed]
  25. J. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007).
    [Crossref]
  26. T. Mu, Z. Chen, C. Zhang, and R. Liang, “Optimal design and performance metric of broadband full-Stokes polarimeters with immunity to Poisson and Gaussian noise,” Opt. Express 24(26), 29691–29704 (2016).
    [Crossref] [PubMed]
  27. J. Zallat, S. Aïnouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A, Pure Appl. Opt. 8(9), 807–814 (2006).
    [Crossref]
  28. D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
    [Crossref]
  29. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [Crossref] [PubMed]
  30. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
    [Crossref] [PubMed]
  31. P. A. Letnes, I. S. Nerbø, L. M. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express 18(22), 23095–23103 (2010).
    [Crossref] [PubMed]
  32. A. Ambirajan and D. C. Look., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34(6), 1656–1658 (1995).
    [Crossref]
  33. F. Goudail, “Noise minimization and equalization for Stokes polarimeters in the presence of signal-dependent Poisson shot noise,” Opt. Lett. 34(5), 647–649 (2009).
    [Crossref] [PubMed]
  34. S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38(6), 983–990 (1999).
    [Crossref]
  35. J. Li, C. Bai, Y. Shen, and D. Xu, “Optical path squeezing interferometry: boosting the resolution for Fourier transform imaging spectrometers,” Opt. Lett. 41(22), 5329–5332 (2016).
    [Crossref] [PubMed]
  36. L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev. 46(3), 443–454 (2004).
    [Crossref]

2016 (4)

2015 (1)

2014 (1)

2013 (3)

2012 (1)

2011 (1)

2010 (3)

2009 (1)

2008 (1)

R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

2007 (3)

2006 (3)

J. Zallat, S. Aïnouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A, Pure Appl. Opt. 8(9), 807–814 (2006).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
[Crossref]

2005 (2)

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

N. Hagen, E. L. Dereniak, and D. T. Sass, “Visible snapshot imaging spectro-polaimeter,” Proc. SPIE 5888, 588810 (2005).
[Crossref]

2004 (2)

2002 (2)

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (2)

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

1999 (2)

K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
[Crossref] [PubMed]

S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38(6), 983–990 (1999).
[Crossref]

1998 (1)

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. F. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8–18 (1998).
[Crossref]

1995 (1)

A. Ambirajan and D. C. Look., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34(6), 1656–1658 (1995).
[Crossref]

Aas, L. M.

Aïnouz, S.

J. Zallat, S. Aïnouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A, Pure Appl. Opt. 8(9), 807–814 (2006).
[Crossref]

Ambirajan, A.

A. Ambirajan and D. C. Look., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34(6), 1656–1658 (1995).
[Crossref]

Aumiller, R. W.

R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
[Crossref]

Bai, C.

Beaudry, N.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Brady, D. J.

Cairns, B.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Chen, Z.

Chenault, D. B.

Chipman, R. A.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Craven-Jones, J.

Cunningham, T. J.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Denes, L. J.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. F. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8–18 (1998).
[Crossref]

Dereniak, E. L.

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
[Crossref] [PubMed]

R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
[Crossref] [PubMed]

R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
[Crossref]

N. Hagen, E. L. Dereniak, and D. T. Sass, “Visible snapshot imaging spectro-polaimeter,” Proc. SPIE 5888, 588810 (2005).
[Crossref]

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Descour, M. R.

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Diner, D. J.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Ellingsen, P. G.

Escuti, M. J.

J. Kim and M. J. Escuti, “Demonstration of polarization grating imaging spectropolarimeter (PGIS),” Proc. SPIE 7672, 767208 (2010).
[Crossref]

Foo, L. D.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Fortunato, G.

S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38(6), 983–990 (1999).
[Crossref]

Garcia, J. P.

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Gerhart, G. R.

Goldstein, D. L.

Gottlieb, M.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. F. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8–18 (1998).
[Crossref]

Goudail, F.

Greengard, L.

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]

Gupta, N.

Hagen, N.

N. Hagen, E. L. Dereniak, and D. T. Sass, “Visible snapshot imaging spectro-polaimeter,” Proc. SPIE 5888, 588810 (2005).
[Crossref]

Hagen, N. A.

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
[Crossref] [PubMed]

R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
[Crossref]

Hamilton, T.

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

Huber, D. F.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. F. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8–18 (1998).
[Crossref]

Iannarilli, F.

Jia, C.

Jones, S.

Journet, B.

S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38(6), 983–990 (1999).
[Crossref]

Kaminsky, B.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. F. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8–18 (1998).
[Crossref]

Kato, T.

Kebabian, P.

Keller, C.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Kemme, S. A.

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Kildemo, M.

P. A. Letnes, I. S. Nerbø, L. M. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express 18(22), 23095–23103 (2010).
[Crossref] [PubMed]

J. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007).
[Crossref]

Kim, J.

J. Kim and M. J. Escuti, “Demonstration of polarization grating imaging spectropolarimeter (PGIS),” Proc. SPIE 7672, 767208 (2010).
[Crossref]

Kudenov, M. W.

Ladstein, J.

J. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007).
[Crossref]

Lee, J.-Y.

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]

Letnes, P. A.

Li, J.

Li, Q.

Liang, R.

Liu, D.

Locke, A. M.

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Look, D. C.

A. Ambirajan and D. C. Look., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34(6), 1656–1658 (1995).
[Crossref]

Macenka, S. A.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

McMillan, R. W.

R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
[Crossref]

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

Meng, X.

Mu, T.

Nerbø, I. S.

P. A. Letnes, I. S. Nerbø, L. M. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express 18(22), 23095–23103 (2010).
[Crossref] [PubMed]

J. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007).
[Crossref]

Oka, K.

Phipps, G. S.

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Prunet, S.

S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38(6), 983–990 (1999).
[Crossref]

Ren, W.

Sabatke, D. S.

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Sampson, R.

R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
[Crossref]

Sass, D. T.

N. Hagen, E. L. Dereniak, and D. T. Sass, “Visible snapshot imaging spectro-polaimeter,” Proc. SPIE 5888, 588810 (2005).
[Crossref]

Seshadri, S.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

Shaw, J. A.

Shen, Y.

Song, H.

Stabo-Eeg, F.

J. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007).
[Crossref]

Stapelbroek, M. G.

Stoll, M. P.

J. Zallat, S. Aïnouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A, Pure Appl. Opt. 8(9), 807–814 (2006).
[Crossref]

Suhre, D. R.

Svendsen, G. K.

J. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007).
[Crossref]

Sweatt, W. C.

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Tsai, T. H.

Turner, T. S.

Tyo, J. S.

Vanderlugt, C.

R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

Wei, Y.

Wu, H.

Xu, D.

Xu, T.

Yan, T.

Yuan, X.

Zallat, J.

J. Zallat, S. Aïnouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A, Pure Appl. Opt. 8(9), 807–814 (2006).
[Crossref]

Zhang, C.

Zhou, J.

Zhu, J.

Zhu, R.

Appl. Opt. (7)

J. Opt. A, Pure Appl. Opt. (1)

J. Zallat, S. Aïnouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A, Pure Appl. Opt. 8(9), 807–814 (2006).
[Crossref]

Opt. Eng. (2)

A. Ambirajan and D. C. Look., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34(6), 1656–1658 (1995).
[Crossref]

S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38(6), 983–990 (1999).
[Crossref]

Opt. Express (8)

S. Jones, F. Iannarilli, and P. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12(26), 6559–6573 (2004).
[Crossref] [PubMed]

T. H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).
[Crossref] [PubMed]

X. Meng, J. Li, T. Xu, D. Liu, and R. Zhu, “High throughput full Stokes Fourier transform imaging spectropolarimetry,” Opt. Express 21(26), 32071–32085 (2013).
[Crossref] [PubMed]

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

T. Mu, Z. Chen, C. Zhang, and R. Liang, “Optimal design and performance metric of broadband full-Stokes polarimeters with immunity to Poisson and Gaussian noise,” Opt. Express 24(26), 29691–29704 (2016).
[Crossref] [PubMed]

T. Mu, C. Zhang, C. Jia, and W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20(16), 18194–18201 (2012).
[Crossref] [PubMed]

P. A. Letnes, I. S. Nerbø, L. M. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express 18(22), 23095–23103 (2010).
[Crossref] [PubMed]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
[Crossref] [PubMed]

Opt. Lett. (7)

Proc. SPIE (9)

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

J. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007).
[Crossref]

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. F. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8–18 (1998).
[Crossref]

A. M. Locke, D. S. Sabatke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Proc. SPIE 4481, 64–72 (2002).
[Crossref]

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005).
[Crossref]

N. Hagen, E. L. Dereniak, and D. T. Sass, “Visible snapshot imaging spectro-polaimeter,” Proc. SPIE 5888, 588810 (2005).
[Crossref]

R. W. Aumiller, C. Vanderlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

J. Kim and M. J. Escuti, “Demonstration of polarization grating imaging spectropolarimeter (PGIS),” Proc. SPIE 7672, 767208 (2010).
[Crossref]

R. W. Aumiller, N. A. Hagen, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Design of an LWIR snapshot imaging spectropolarimeter,” Proc. SPIE 6285, 62950E (2006).
[Crossref]

SIAM Rev. (1)

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]

Other (1)

D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the proposed FTISP using FLCs and Wollaston interferometer.
Fig. 2
Fig. 2 Schematic diagram of the FLC-PSA.
Fig. 3
Fig. 3 Optical configurations used to achieve four different polarization states.
Fig. 4
Fig. 4 Optimized curves of FLC-PSA.
Fig. 5
Fig. 5 Performance of the resulting design. (a) Diagram of optimized tetrahedrons and ideal tetrahedron. (b) Volume curves of tetrahedrons.
Fig. 6
Fig. 6 Propagation of the beams in a single WP. (a) Propagation of beams in the WP. (b) Propagation of wave normal in the WP crystal II.
Fig. 7
Fig. 7 Analysis of retroreflector. (a) Schematic diagram of retroreflector. (b) Equivalent coordinate system of retroreflector.
Fig. 8
Fig. 8 Beam propagation in the WP and the equivalent parallel plate.
Fig. 9
Fig. 9 2D OPD distribution and curves. (a) OPD variations with the incident angle ω and wavelength λ from 400 to 1000 nm. (b) OPDs of 400, 700, and 1000 nm.
Fig. 10
Fig. 10 Squeezing characteristic of OPD. (a) OPD squeezing ratio over the wavelength range. (b) Difference in OPDs for different wavelengths.
Fig. 11
Fig. 11 Extraction of four polarized interferograms for one object point.
Fig. 12
Fig. 12 Experiment on two pairs of 3D glasses. (a) Interferometric images with four polarization states. (b) 3D glasses and three recovered spectral images. (c) Four Stokes parameter images at 649 nm.
Fig. 13
Fig. 13 Outdoor experiment on cars. (a) Spectral images of the scene at different wavelengths, and a fusion spectral image of 3 channels (RGB). (b) Four Stokes parameter images at 453 nm.

Tables (3)

Tables Icon

Table 1 Variations of orientation azimuth for FLC1 and FLC2.

Tables Icon

Table 2 GA configuration parameters.

Tables Icon

Table 3 Optimized initial azimuths for the FLC-PSA.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

I n ( Δ ) = σ min σ max ( 1 + cos 2 π σ Δ ) ( A n ( σ ) S ( σ ) ) d σ ,
B n ( σ ) = 1 ( I n ( Δ ) ) .
B ( σ ) = A ( σ ) S ( σ ) .
S ( σ ) = A 1 ( σ ) B ( σ ) .
S out ( σ ) = M S in ( σ ) ,
M = M LP M QWP M FLC2 M HWP M FLC1 ,
M LP ( 0 ° ) = 1 2 [ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ] .
M R ( d , θ , λ ) = [ 1 0 0 0 0 cos 2 2 θ + sin 2 2 θ cos δ ( d , λ ) sin 2 θ cos 2 θ ( 1 cos δ ( d , λ ) ) sin 2 θ sin δ ( d , λ ) 0 sin 2 θ cos 2 θ ( 1 cos δ ( d , λ ) ) sin 2 2 θ + cos 2 2 θ cos δ ( d , λ ) cos 2 θ sin δ ( d , λ ) 0 sin 2 θ sin δ ( d , λ ) cos 2 θ sin δ ( d , λ ) cos δ ( d , λ ) ] ,
ϕ ( λ ) = 2 π C UV ( λ 2 λ UV 2 ) 1 / 2 2 π C IR ( λ IR 2 λ 2 ) 1 / 2 ,
δ ( d , λ ) = d d 0 ϕ ( λ ) .
A n = M LP ( 0 ° ) M R ( d QWP , θ QWP , λ ) M R ( d FLC2 , θ FLC2 + β n , λ ) M R ( d HWP , θ HWP , λ ) M R ( d FLC1 , θ FLC1 + α n , λ ) ,
e = 1 N n = 1 N ( 1 / CN ( λ n ) 1 / CN min ) 4 ,
min e , λ [ λ min , λ max ] , θ [ 0 ° , 18 0 ° ] .
A CN = [ 0.5 0.4882 0.0513 0.0951 0.5 0.0233 0.2952 0.4029 0.5 0.0707 0.4926 0.0488 0.5 0.0147 0.0806 0.4932 ] .
A = 1 2 [ 1 1 / 3 1 / 3 1 / 3 1 1 / 3 1 / 3 1 / 3 1 1 / 3 1 / 3 1 / 3 1 1 / 3 1 / 3 1 / 3 ] .
γ e o _ I = arc sin ( n a sin ω / n e ) , γ o e _ I = arc sin ( n a sin ω / n o ) .
γ e o _ I I = γ e o _ I I c .
γ o e _ I I = cot 1 ( 0.5 sin ( 2 c ) ( n o 2 n e 2 ) n o 2 cos 2 c + n e 2 sin 2 c + n o n e n o 2 ( cos 2 c sin 2 ( c + γ o e _ I ) ) + n e 2 sin 2 c n o sin ( c + γ o e _ I ) ( n o 2 cos 2 c + n e 2 sin 2 c ) ) .
γ o e _ I I = π 2 tan 1 ( n o 2 tan ( π / 2 + c γ o e _ I I ) n e 2 ) .
n o e = n o e cos γ ¯ o e _ I I = n o sin ( c + γ o e _ I ) sin γ o e _ I I cos ( tan 1 ( n o 2 tan ( π / 2 + c - γ ˜ o e ) n e 2 ) ( π / 2 + c - γ o e _ I I ) ) .
ξ e o = sin 1 ( n o sin γ e o _ I I / n a ) , ξ o e = sin 1 ( n o e sin γ o e _ I I / n a ) ,
φ e o = sin 1 ( n a sin ξ e o / n r ) , φ o e = sin 1 ( n a sin ξ o e / n r ) .
x B1 = ( y A + 0.5 d W cot c ) / ( cot c tan γ e o _ I ) , y B1 = ( x B1 0.5 d W ) cot c , x C1 = d W , y C1 = y B1 + ( x C1 x B1 ) tan γ e o _ I I , x D1 = d W + h W , y D1 = y C1 + ( x D1 x C1 ) tan ξ e o , x E1 = d W + h W + 2 d r , y E1 = y D1 + ( x E1 x D1 ) tan φ e o , x F1 = d W + 2 h W + 2 d r , y F1 = y E1 + ( x F1 x E1 ) tan ξ e o , y G1 = y F1 + ( x G1 x F1 ) tan ξ e o , x G1 = ( y F1 + ( 1.5 d W + 2 h W + 2 d r ) cot c x E1 tan γ e o _ I I 2 h r ) / ( cot c tan γ e o _ I I ) , x H1 = 2 ( d W + h W + d r ) , y H1 = y G1 + ( x H1 x G1 ) tan γ e o _ I ,
Δ ( λ , ω ) = ( n o AB 2 + n o e B 2 C 2 + n a C 2 D 2 + n r D 2 E 2 + n i E 2 F 2 + n o e F 2 G 2 + n o G 2 H 2 + n a H 2 K ) ( n e AB 1 + n o B 1 C 1 + n a C 1 D 1 + n r D 1 E 1 + n i E 1 F 1 + n o F 1 G 1 + n e G 1 H 1 ) = n o ( x B2 + x H2 x G2 ) cos γ o e _ I + n o e ( ( x C2 x B2 ) + ( x G2 x F2 ) ) cos γ o e _ I I + n a ( ( x D2 x C2 ) + ( x F2 x E2 ) ) cos ξ o e + n r ( x E2 x D2 ) cos φ o e . + n a ( y H1 y H2 ) sin ω n e ( x B1 + x H1 x G1 ) cos γ e o _ I n r ( x E1 x D1 ) cos φ e o n o ( ( x C1 x B1 ) + ( x G1 x F1 ) ) cos γ e o _ I I n a ( ( x D1 x C1 ) + ( x F1 x E1 ) ) cos ξ e o
n 0 ( λ ) = 2.69954 + 0.0167497 ( λ 2 0.0541165 ) 1 0.0157964 λ 2 , n e ( λ ) = 2.18432 + 0.0092658 ( λ 2 0.0272201 ) 1 0.0024918 λ 2 .
R ( λ ) = n = 0 N 1 Δ ( λ , ω n ) / Δ ( 550 , ω n ) N ,
Δ ( λ , ω ) = Δ ( λ , ω ) R ( λ ) Δ ( 550 , ω ) .

Metrics