Abstract

In this work, a compact fiber chirped pulse amplification system exploiting a tandem of a chirped fiber Bragg grating stretcher and a chirped volume Bragg grating compressor with matched chromatic dispersion is presented. Chirped pulses of 230 ps duration were amplified in a Yb-doped fiber amplifier and re-compressed to 208 fs duration with good fidelity. The compressed pulse duration was fine-tuned by temperature gradient along the fiber Bragg grating stretcher.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-aperture chirped volume Bragg grating based fiber CPA system

Kai-Hsiu Liao, Ming-Yuan Cheng, Emilie Flecher, Vadim I. Smirnov, Leonid B. Glebov, and Almantas Galvanauskas
Opt. Express 15(8) 4876-4882 (2007)

Dispersion compensation by two-stage stretching in a sub-400 fs, 1.2 mJ Yb:CaF2 amplifier

C. P. João, H. Pires, L. Cardoso, T. Imran, and G. Figueira
Opt. Express 22(9) 10097-10104 (2014)

Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings

Guoqing Chang, Matthew Rever, Vadim Smirnov, Leonid Glebov, and Almantas Galvanauskas
Opt. Lett. 34(19) 2952-2954 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W, 50 µJ, sub-picosecond fiber laser system,” Opt. Express 14(25), 12546–12551 (2006).
    [Crossref] [PubMed]
  2. J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
    [Crossref]
  3. R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
    [Crossref] [PubMed]
  4. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
    [Crossref]
  5. K. H. Liao, A. G. Mordovanakis, B. Hou, G. Chang, M. Rever, G. A. Mourou, J. Nees, and A. Galvanauskas, “Generation of hard X-rays using an ultrafast fiber laser system,” Opt. Express 15(21), 13942–13948 (2007).
    [Crossref] [PubMed]
  6. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  7. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  8. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1(10), 1003–1006 (1984).
    [Crossref]
  9. G. Imeshev, I. Hartl, and M. E. Fermann, “Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor,” Opt. Lett. 29(7), 679–681 (2004).
    [Crossref] [PubMed]
  10. A. Galvanauskas, A. Heaney, I. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” Conf. on Lasers and Electro-Optics 6, 362 (1998).
  11. K.-H. Liao, M.-Y. Cheng, E. Flecher, V. I. Smirnov, L. B. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15(8), 4876–4882 (2007).
    [Crossref] [PubMed]
  12. L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
    [Crossref]
  13. G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings,” Opt. Lett. 34(19), 2952–2954 (2009).
    [Crossref] [PubMed]
  14. R. Sun, D. Jin, F. Tan, S. Wei, C. Hong, J. Xu, J. Liu, and P. Wang, “High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating,” Opt. Express 24(20), 22806–22812 (2016).
    [Crossref] [PubMed]
  15. G. Sobon, K. Krzempek, J. Taka, and J. Sotor, “Compact, all-PM fiber-CPA system based on chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
    [Crossref]
  16. R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
    [Crossref]
  17. H. Hoogland and R. Holzwarth, “Compact polarization-maintaining 2.05-μm fiber laser at 1-MHz and 1-MW peak power,” Opt. Lett. 40(15), 3520–3523 (2015).
    [Crossref] [PubMed]
  18. A. Galvanauskas and M. Fermann, “Optical pulse amplification using chirped Bragg grating,” US Patent 5,499,143 (1996).
  19. D. Sanchez, G. Matras, J. Biegert, and C. Simon-Boisson, “High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping,” Proc. SPIE 10082, 100820 (2017).
  20. S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
    [Crossref]
  21. A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
    [Crossref]

2017 (1)

D. Sanchez, G. Matras, J. Biegert, and C. Simon-Boisson, “High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping,” Proc. SPIE 10082, 100820 (2017).

2016 (4)

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

R. Sun, D. Jin, F. Tan, S. Wei, C. Hong, J. Xu, J. Liu, and P. Wang, “High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating,” Opt. Express 24(20), 22806–22812 (2016).
[Crossref] [PubMed]

G. Sobon, K. Krzempek, J. Taka, and J. Sotor, “Compact, all-PM fiber-CPA system based on chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

2015 (1)

2014 (1)

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

2013 (1)

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

2009 (2)

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings,” Opt. Lett. 34(19), 2952–2954 (2009).
[Crossref] [PubMed]

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

2007 (2)

2006 (2)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W, 50 µJ, sub-picosecond fiber laser system,” Opt. Express 14(25), 12546–12551 (2006).
[Crossref] [PubMed]

2004 (1)

2001 (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

1998 (1)

A. Galvanauskas, A. Heaney, I. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” Conf. on Lasers and Electro-Optics 6, 362 (1998).

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

1984 (1)

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Barty, C. P. J.

Beigang, R.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Berera, R.

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Biegert, J.

D. Sanchez, G. Matras, J. Biegert, and C. Simon-Boisson, “High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping,” Proc. SPIE 10082, 100820 (2017).

Bordenyuk, A.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Chang, G.

Cheng, M.-Y.

Cohanoschi, I.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Dawson, J. W.

Ebendorff-Heideprem, H.

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

Erdogan, I.

A. Galvanauskas, A. Heaney, I. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” Conf. on Lasers and Electro-Optics 6, 362 (1998).

Fermann, M. E.

Flecher, E.

Fork, R. L.

Frankinas, S.

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Galvanauskas, A.

Gapontsev, V.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Glebov, A.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Glebov, A. L.

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Glebov, L.

Glebov, L. B.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

K.-H. Liao, M.-Y. Cheng, E. Flecher, V. I. Smirnov, L. B. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15(8), 4876–4882 (2007).
[Crossref] [PubMed]

Glebova, L.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Gordon, J. P.

Harter, D.

A. Galvanauskas, A. Heaney, I. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” Conf. on Lasers and Electro-Optics 6, 362 (1998).

Hartl, I.

Heaney, A.

A. Galvanauskas, A. Heaney, I. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” Conf. on Lasers and Electro-Optics 6, 362 (1998).

Holzwarth, R.

Hong, C.

Hoogland, H.

Hou, B.

Imeshev, G.

Jin, D.

Kadwani, P.

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

Kancharla, V.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Kennis, J. T. M.

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Krzempek, K.

G. Sobon, K. Krzempek, J. Taka, and J. Sotor, “Compact, all-PM fiber-CPA system based on chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Lantigua, C.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Liao, K. H.

Liao, K.-H.

Limpert, J.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Liu, J.

Lumeau, J.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Martinez, O. E.

Matras, G.

D. Sanchez, G. Matras, J. Biegert, and C. Simon-Boisson, “High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping,” Proc. SPIE 10082, 100820 (2017).

Matthäus, G.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Michailovas, A.

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Monro, T. M.

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

Mordovanakis, A. G.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Mourou, G. A.

Müller, M.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Myasnikov, D.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Nees, J.

Nolte, S.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Notni, G.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Platonov, N.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Rever, M.

Richardson, M.

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

Riehemann, S.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Rotari, E.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Rusteika, N.

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Samartsev, I.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Sanchez, D.

D. Sanchez, G. Matras, J. Biegert, and C. Simon-Boisson, “High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping,” Proc. SPIE 10082, 100820 (2017).

Schreiber, T.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Shah, L.

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W, 50 µJ, sub-picosecond fiber laser system,” Opt. Express 14(25), 12546–12551 (2006).
[Crossref] [PubMed]

Shkurikhin, O.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Simon-Boisson, C.

D. Sanchez, G. Matras, J. Biegert, and C. Simon-Boisson, “High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping,” Proc. SPIE 10082, 100820 (2017).

Sims, R. A.

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

Smirnov, V.

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings,” Opt. Lett. 34(19), 2952–2954 (2009).
[Crossref] [PubMed]

Smirnov, V. I.

Smolski, O. V.

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Sobon, G.

G. Sobon, K. Krzempek, J. Taka, and J. Sotor, “Compact, all-PM fiber-CPA system based on chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Sotor, J.

G. Sobon, K. Krzempek, J. Taka, and J. Sotor, “Compact, all-PM fiber-CPA system based on chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Squier, J.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Sun, R.

Taka, J.

G. Sobon, K. Krzempek, J. Taka, and J. Sotor, “Compact, all-PM fiber-CPA system based on chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Tan, F.

Torosyan, G.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Tünnermann, A.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

van Grondelle, R.

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Vasilyeu, R.

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Wang, P.

Wei, S.

Xu, J.

Yusim, A.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Appl. Phys. B (1)

R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B 111(2), 299–304 (2013).
[Crossref]

Conf. on Lasers and Electro-Optics (1)

A. Galvanauskas, A. Heaney, I. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” Conf. on Lasers and Electro-Optics 6, 362 (1998).

IEEE J. Quantum Electron. (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. (1)

G. Sobon, K. Krzempek, J. Taka, and J. Sotor, “Compact, all-PM fiber-CPA system based on chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Opt. Commun. (2)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Opt. Eng. (1)

L. B. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. V. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Photosynth. Res. (1)

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Proc. SPIE (3)

D. Sanchez, G. Matras, J. Biegert, and C. Simon-Boisson, “High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping,” Proc. SPIE 10082, 100820 (2017).

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Other (1)

A. Galvanauskas and M. Fermann, “Optical pulse amplification using chirped Bragg grating,” US Patent 5,499,143 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the experimental FCPA system with CFBG stretcher and CVBG pulse compressor. CIRC - optical circulator, tCFBG - thermally tunable CFBG module, WDM - wavelength-division multiplexer, LD - laser diode, PMF:Yb - Ytterbium doped polarization maintaining single-mode fiber, HWP - half-wave plate, PBS - polarization beam splitter, QWP - quarter-wave plate, CVBG - chirped volume Bragg grating.
Fig. 2
Fig. 2 Spectrum of the stretched pulses after CFBG. Inset: temporal envelope of the stretched pulses.
Fig. 3
Fig. 3 Experimentally measured and smoothed (~0.3 nm smoothing) GD traces of CVBG (green line), CFBG (blue line) and their net GD trace (red line). The black curve shows measured reflectivity profile of CVBG.
Fig. 4
Fig. 4 Measured autocorrelation traces of compressed pulses after CVBG with a constant nominal temperature along CFBG (red line) and with an optimized temperature gradient applied along CFBG (black line). Inset: corresponding temperature distributions along CFBG.
Fig. 5
Fig. 5 a) Envelope of the compressed pulses retrieved from SHG FROG measurement in comparison with transform-limited pulse shape derived from the measured spectrum. Inset: measured and retrieved FROG traces. b) Measured pulse spectrum from the FCPA system in comparison with retrieved spectrum and retrieved spectral phase from FROG.
Fig. 6
Fig. 6 Dependence of 4σ beam radius at the output of the FCPA system versus the distance from the waist location for both directions perpendicular to the axis of propagation. Inset: beam profile at the waist position.

Metrics