Abstract

Finite element method simulations have been carried out on the photonic nanojet (PNJ) mediated surface enhanced Raman scattering (SERS) technique for the first time, and this technique has been found to provide (i) better Raman scattering enhancement of single molecules and (ii) a long working distance between the microscopic objective lens and sample, as compared with the conventional SERS technique. A PNJ mediated surface enhanced fluorescence (SEF) technique has been proposed to enhance the fluorescence of single molecules using the combination of localized surface plasmons inside nanostructures and the PNJ of a dielectric microsphere (MS), and this technique is numerically proved to be efficient as compared with a conventional SEF technique. Moreover, the generation of a PNJ from single lollipop shaped microstructures and its applications in the above mentioned techniques have been reported.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Purcell effect of nanoshell dimer on single molecule’s fluorescence

Jiunn-Woei Liaw, Jeng-Hong Chen, Chi-San Chen, and Mao-Kuen Kuo
Opt. Express 17(16) 13532-13540 (2009)

Vertically-oriented nanoparticle dimer based on focused plasmonic trapping

Zhe Shen, Lei Su, and Yao-chun Shen
Opt. Express 24(14) 16052-16065 (2016)

Spatial control of photonic nanojets

Jinlong Zhu and Lynford L. Goddard
Opt. Express 24(26) 30444-30464 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
    [Crossref] [PubMed]
  2. R. Matsushita and M. Kiguchi, “Surface enhanced Raman scattering of a single molecular junction,” Phys. Chem. Chem. Phys. 17(33), 21254–21260 (2015).
    [Crossref] [PubMed]
  3. A. Sadana, Bioseparations of Proteins: Unfolding/Folding and Validations (Elsevier, 1997), Vol. 1, pp. 61–81.
  4. S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
    [Crossref] [PubMed]
  5. Z. H. Kim, “Single-molecule surface-enhanced Raman scattering: Current status and future perspective,” Front. Phys. 9(1), 25–30 (2014).
    [Crossref]
  6. S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
    [Crossref] [PubMed]
  7. A. B. Zrimsek, N. L. Wong, and R. P. Van Duyne, “Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof,” J. Phys. Chem. C 120(9), 5133–5142 (2016).
    [Crossref]
  8. A. Ahmed and R. Gordon, “Single molecule directivity enhanced Raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
    [Crossref] [PubMed]
  9. A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
    [Crossref] [PubMed]
  10. K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc. 60(12), 322–334 (2006).
    [Crossref] [PubMed]
  11. I. Alessandri, N. Bontempi, and L. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
    [Crossref]
  12. G. M. Das, R. Laha, and V. R. Dantham, “Photonic nanojet‐mediated SERS technique for enhancing the Raman scattering of a few molecules,” J. Raman Spectrosc. 47(8), 895–900 (2016).
    [Crossref]
  13. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  14. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
    [Crossref] [PubMed]
  15. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
    [Crossref] [PubMed]
  16. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  17. I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
    [Crossref] [PubMed]
  18. W. Jiskoot and D. Crommelin, Methods for structural analysis of protein pharmaceuticals (Springer Science & Business Media, 2005), Vol. 3, pp. 27–80.
  19. R. W. Ruddon, Cancer biology (Oxford University Press, 2007). pp. 459–464.
  20. T. Palmer and P. L. Bonner, Enzymes: biochemistry, biotechnology, clinical chemistry (Elsevier, 2007). pp. 14–43.
  21. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
    [Crossref]
  22. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  23. K. Aslan and V. H. Pérez-Luna, “Nonradiative interactions between biotin-functionalized gold nanoparticles and fluorophore-labeled antibiotin,” Plasmonics 1(2-4), 111–119 (2006).
    [Crossref]
  24. K. Aslan and V. H. Pérez-Luna, “Quenched emission of fluorescence by ligand functionalized gold nanoparticles,” J. Fluoresc. 14(4), 401–405 (2004).
    [Crossref] [PubMed]
  25. Z. Wu and R. Jin, “On the ligand’s role in the fluorescence of gold nanoclusters,” Nano Lett. 10(7), 2568–2573 (2010).
    [Crossref] [PubMed]
  26. S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
    [Crossref] [PubMed]
  27. T. Som and B. Karmakar, “Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses,” Nano Res. 2(8), 607–616 (2009).
    [Crossref]
  28. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  29. D. Sarid and W. Challener, Modern introduction to surface plasmons: theory, Mathematica modeling, and applications (Cambridge University Press, 2010), pp. 201–251.
  30. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
    [Crossref] [PubMed]
  31. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
    [Crossref]
  32. N. Hooshmand, S. R. Panikkanvalappil, and M. A. El-Sayed, “Effects of the Substrate Refractive Index, the Exciting Light Propagation Direction, and the Relative Cube Orientation on the Plasmonic Coupling Behavior of Two Silver Nanocubes at Different Separations,” J. Phys. Chem. C 120(37), 20896–20904 (2016).
    [Crossref]
  33. M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes,” J. Am. Chem. Soc. 134(14), 6434–6442 (2012).
    [Crossref] [PubMed]
  34. F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
    [Crossref] [PubMed]
  35. T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
    [Crossref] [PubMed]
  36. K. Yi, H. Wang, Y. Lu, and Z. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
    [Crossref]
  37. V. Dantham, P. Bisht, and C. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
    [Crossref]
  38. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [Crossref]
  39. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [Crossref] [PubMed]
  40. Y. Ruan, K. Boyd, H. Ji, A. Francois, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
    [Crossref] [PubMed]
  41. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [Crossref] [PubMed]

2016 (6)

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

A. B. Zrimsek, N. L. Wong, and R. P. Van Duyne, “Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof,” J. Phys. Chem. C 120(9), 5133–5142 (2016).
[Crossref]

G. M. Das, R. Laha, and V. R. Dantham, “Photonic nanojet‐mediated SERS technique for enhancing the Raman scattering of a few molecules,” J. Raman Spectrosc. 47(8), 895–900 (2016).
[Crossref]

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

N. Hooshmand, S. R. Panikkanvalappil, and M. A. El-Sayed, “Effects of the Substrate Refractive Index, the Exciting Light Propagation Direction, and the Relative Cube Orientation on the Plasmonic Coupling Behavior of Two Silver Nanocubes at Different Separations,” J. Phys. Chem. C 120(37), 20896–20904 (2016).
[Crossref]

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

2015 (1)

R. Matsushita and M. Kiguchi, “Surface enhanced Raman scattering of a single molecular junction,” Phys. Chem. Chem. Phys. 17(33), 21254–21260 (2015).
[Crossref] [PubMed]

2014 (3)

Z. H. Kim, “Single-molecule surface-enhanced Raman scattering: Current status and future perspective,” Front. Phys. 9(1), 25–30 (2014).
[Crossref]

Y. Ruan, K. Boyd, H. Ji, A. Francois, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
[Crossref] [PubMed]

I. Alessandri, N. Bontempi, and L. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

2013 (3)

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

2012 (2)

A. Ahmed and R. Gordon, “Single molecule directivity enhanced Raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes,” J. Am. Chem. Soc. 134(14), 6434–6442 (2012).
[Crossref] [PubMed]

2011 (3)

V. Dantham, P. Bisht, and C. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
[Crossref] [PubMed]

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

2010 (1)

Z. Wu and R. Jin, “On the ligand’s role in the fluorescence of gold nanoclusters,” Nano Lett. 10(7), 2568–2573 (2010).
[Crossref] [PubMed]

2009 (2)

T. Som and B. Karmakar, “Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses,” Nano Res. 2(8), 607–616 (2009).
[Crossref]

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
[Crossref] [PubMed]

2008 (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

2007 (6)

K. Yi, H. Wang, Y. Lu, and Z. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[Crossref]

2006 (3)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

K. Aslan and V. H. Pérez-Luna, “Nonradiative interactions between biotin-functionalized gold nanoparticles and fluorophore-labeled antibiotin,” Plasmonics 1(2-4), 111–119 (2006).
[Crossref]

K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc. 60(12), 322–334 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (2)

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Adibi, A.

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes,” J. Am. Chem. Soc. 134(14), 6434–6442 (2012).
[Crossref] [PubMed]

Ahmed, A.

A. Ahmed and R. Gordon, “Single molecule directivity enhanced Raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
[Crossref] [PubMed]

Alessandri, I.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

I. Alessandri, N. Bontempi, and L. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Anger, P.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Aslan, K.

K. Aslan and V. H. Pérez-Luna, “Nonradiative interactions between biotin-functionalized gold nanoparticles and fluorophore-labeled antibiotin,” Plasmonics 1(2-4), 111–119 (2006).
[Crossref]

K. Aslan and V. H. Pérez-Luna, “Quenched emission of fluorescence by ligand functionalized gold nanoparticles,” J. Fluoresc. 14(4), 401–405 (2004).
[Crossref] [PubMed]

Backman, V.

Benamara, O.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Berthelot, A.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Bisht, P.

V. Dantham, P. Bisht, and C. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

Bonod, N.

Bontempi, N.

I. Alessandri, N. Bontempi, and L. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Boyd, K.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Chamanzar, M.

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes,” J. Am. Chem. Soc. 134(14), 6434–6442 (2012).
[Crossref] [PubMed]

Chen, Z.

Colas des Francs, G.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Cui, X.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

Dantham, V.

V. Dantham, P. Bisht, and C. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

Dantham, V. R.

G. M. Das, R. Laha, and V. R. Dantham, “Photonic nanojet‐mediated SERS technique for enhancing the Raman scattering of a few molecules,” J. Raman Spectrosc. 47(8), 895–900 (2016).
[Crossref]

Das, G. M.

G. M. Das, R. Laha, and V. R. Dantham, “Photonic nanojet‐mediated SERS technique for enhancing the Raman scattering of a few molecules,” J. Raman Spectrosc. 47(8), 895–900 (2016).
[Crossref]

Depero, L.

I. Alessandri, N. Bontempi, and L. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Derom, S.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Devilez, A.

Ebendorff-Heidepriem, H.

Elliott, S. R.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

El-Sayed, M. A.

N. Hooshmand, S. R. Panikkanvalappil, and M. A. El-Sayed, “Effects of the Substrate Refractive Index, the Exciting Light Propagation Direction, and the Relative Cube Orientation on the Plasmonic Coupling Behavior of Two Silver Nanocubes at Different Separations,” J. Phys. Chem. C 120(37), 20896–20904 (2016).
[Crossref]

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes,” J. Am. Chem. Soc. 134(14), 6434–6442 (2012).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
[Crossref] [PubMed]

Francois, A.

Gawinkowski, S.

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Gérard, D.

Girard, C.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Gordon, R.

A. Ahmed and R. Gordon, “Single molecule directivity enhanced Raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
[Crossref] [PubMed]

Gorski, A.

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Heifetz, A.

Hooshmand, N.

N. Hooshmand, S. R. Panikkanvalappil, and M. A. El-Sayed, “Effects of the Substrate Refractive Index, the Exciting Light Propagation Direction, and the Relative Cube Orientation on the Plasmonic Coupling Behavior of Two Silver Nanocubes at Different Separations,” J. Phys. Chem. C 120(37), 20896–20904 (2016).
[Crossref]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Hutter, T.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Ji, H.

Jin, R.

Z. Wu and R. Jin, “On the ligand’s role in the fluorescence of gold nanoclusters,” Nano Lett. 10(7), 2568–2573 (2010).
[Crossref] [PubMed]

Jin, S. M.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Jurdyc, A. M.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Kaminska, I.

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Karmakar, B.

T. Som and B. Karmakar, “Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses,” Nano Res. 2(8), 607–616 (2009).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Kiguchi, M.

R. Matsushita and M. Kiguchi, “Surface enhanced Raman scattering of a single molecular junction,” Phys. Chem. Chem. Phys. 17(33), 21254–21260 (2015).
[Crossref] [PubMed]

Kim, H. M.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Kim, Z. H.

Z. H. Kim, “Single-molecule surface-enhanced Raman scattering: Current status and future perspective,” Front. Phys. 9(1), 25–30 (2014).
[Crossref]

Kleinman, S. L.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Kneipp, H.

Kneipp, K.

Kong, S.-C.

Laha, R.

G. M. Das, R. Laha, and V. R. Dantham, “Photonic nanojet‐mediated SERS technique for enhancing the Raman scattering of a few molecules,” J. Raman Spectrosc. 47(8), 895–900 (2016).
[Crossref]

Lai, Y.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

Lecler, S.

Lee, H. M.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Li, X.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Lin, H.-Q.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

Lombardi, J. R.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

Lu, Y.

K. Yi, H. Wang, Y. Lu, and Z. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Ma, H.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

Mahajan, S.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Mahmoud, M. A.

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes,” J. Am. Chem. Soc. 134(14), 6434–6442 (2012).
[Crossref] [PubMed]

Matsushita, R.

R. Matsushita and M. Kiguchi, “Surface enhanced Raman scattering of a single molecular junction,” Phys. Chem. Chem. Phys. 17(33), 21254–21260 (2015).
[Crossref] [PubMed]

Meyrueis, P.

Monro, T. M.

Munch, J.

Namboodiri, C.

V. Dantham, P. Bisht, and C. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

Niedziólka-Jönsson, J.

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Nogala, W.

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Panikkanvalappil, S. R.

N. Hooshmand, S. R. Panikkanvalappil, and M. A. El-Sayed, “Effects of the Substrate Refractive Index, the Exciting Light Propagation Direction, and the Relative Cube Orientation on the Plasmonic Coupling Behavior of Two Silver Nanocubes at Different Separations,” J. Phys. Chem. C 120(37), 20896–20904 (2016).
[Crossref]

Pérez-Luna, V. H.

K. Aslan and V. H. Pérez-Luna, “Nonradiative interactions between biotin-functionalized gold nanoparticles and fluorophore-labeled antibiotin,” Plasmonics 1(2-4), 111–119 (2006).
[Crossref]

K. Aslan and V. H. Pérez-Luna, “Quenched emission of fluorescence by ligand functionalized gold nanoparticles,” J. Fluoresc. 14(4), 401–405 (2004).
[Crossref] [PubMed]

Phillips, E.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Pillonnet, A.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Popov, E.

Pszona, M.

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Qin, F.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

Rigneault, H.

Ringe, E.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Ruan, Q.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

Ruan, Y.

Schatz, G. C.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Scheidt, K. A.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Simpson, J. J.

Som, T.

T. Som and B. Karmakar, “Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses,” Nano Res. 2(8), 607–616 (2009).
[Crossref]

Stout, B.

Suh, Y. D.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Taflove, A.

Takakura, Y.

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Valley, N.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

A. B. Zrimsek, N. L. Wong, and R. P. Van Duyne, “Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof,” J. Phys. Chem. C 120(9), 5133–5142 (2016).
[Crossref]

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Waluk, J.

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Wang, H.

K. Yi, H. Wang, Y. Lu, and Z. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Wang, J.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

Wenger, J.

Wong, N. L.

A. B. Zrimsek, N. L. Wong, and R. P. Van Duyne, “Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof,” J. Phys. Chem. C 120(9), 5133–5142 (2016).
[Crossref]

Wu, Z.

Z. Wu and R. Jin, “On the ligand’s role in the fluorescence of gold nanoclusters,” Nano Lett. 10(7), 2568–2573 (2010).
[Crossref] [PubMed]

Wustholz, K. L.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Yang, Z.

K. Yi, H. Wang, Y. Lu, and Z. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Yi, K.

K. Yi, H. Wang, Y. Lu, and Z. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Zrimsek, A. B.

A. B. Zrimsek, N. L. Wong, and R. P. Van Duyne, “Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof,” J. Phys. Chem. C 120(9), 5133–5142 (2016).
[Crossref]

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Appl. Spectrosc. (1)

Chem. Rev. (1)

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

Front. Phys. (1)

Z. H. Kim, “Single-molecule surface-enhanced Raman scattering: Current status and future perspective,” Front. Phys. 9(1), 25–30 (2014).
[Crossref]

J. Am. Chem. Soc. (2)

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes,” J. Am. Chem. Soc. 134(14), 6434–6442 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

K. Yi, H. Wang, Y. Lu, and Z. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

V. Dantham, P. Bisht, and C. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

J. Fluoresc. (1)

K. Aslan and V. H. Pérez-Luna, “Quenched emission of fluorescence by ligand functionalized gold nanoparticles,” J. Fluoresc. 14(4), 401–405 (2004).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

N. Hooshmand, S. R. Panikkanvalappil, and M. A. El-Sayed, “Effects of the Substrate Refractive Index, the Exciting Light Propagation Direction, and the Relative Cube Orientation on the Plasmonic Coupling Behavior of Two Silver Nanocubes at Different Separations,” J. Phys. Chem. C 120(37), 20896–20904 (2016).
[Crossref]

A. B. Zrimsek, N. L. Wong, and R. P. Van Duyne, “Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof,” J. Phys. Chem. C 120(9), 5133–5142 (2016).
[Crossref]

J. Raman Spectrosc. (1)

G. M. Das, R. Laha, and V. R. Dantham, “Photonic nanojet‐mediated SERS technique for enhancing the Raman scattering of a few molecules,” J. Raman Spectrosc. 47(8), 895–900 (2016).
[Crossref]

Nano Lett. (6)

A. Ahmed and R. Gordon, “Single molecule directivity enhanced Raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
[Crossref] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Z. Wu and R. Jin, “On the ligand’s role in the fluorescence of gold nanoclusters,” Nano Lett. 10(7), 2568–2573 (2010).
[Crossref] [PubMed]

Nano Res. (1)

T. Som and B. Karmakar, “Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses,” Nano Res. 2(8), 607–616 (2009).
[Crossref]

Nanoscale (2)

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H.-Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8(40), 17645–17657 (2016).
[Crossref] [PubMed]

S. Gawinkowski, M. Pszona, A. Gorski, J. Niedziółka-Jönsson, I. Kamińska, W. Nogala, and J. Waluk, “Single molecule Raman spectra of porphycene isotopologues,” Nanoscale 8(6), 3337–3349 (2016).
[Crossref] [PubMed]

Nanotechnology (3)

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

R. Matsushita and M. Kiguchi, “Surface enhanced Raman scattering of a single molecular junction,” Phys. Chem. Chem. Phys. 17(33), 21254–21260 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Plasmonics (1)

K. Aslan and V. H. Pérez-Luna, “Nonradiative interactions between biotin-functionalized gold nanoparticles and fluorophore-labeled antibiotin,” Plasmonics 1(2-4), 111–119 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

RSC Advances (1)

I. Alessandri, N. Bontempi, and L. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Other (5)

W. Jiskoot and D. Crommelin, Methods for structural analysis of protein pharmaceuticals (Springer Science & Business Media, 2005), Vol. 3, pp. 27–80.

R. W. Ruddon, Cancer biology (Oxford University Press, 2007). pp. 459–464.

T. Palmer and P. L. Bonner, Enzymes: biochemistry, biotechnology, clinical chemistry (Elsevier, 2007). pp. 14–43.

D. Sarid and W. Challener, Modern introduction to surface plasmons: theory, Mathematica modeling, and applications (Cambridge University Press, 2010), pp. 201–251.

A. Sadana, Bioseparations of Proteins: Unfolding/Folding and Validations (Elsevier, 1997), Vol. 1, pp. 61–81.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of a dielectric (silica) MS kept on a metallic nanosphere dimer supported by a cylindrical silica substrate, illuminated with focused Gaussian beam. Inset shows the magnified portion of the nanoplasmonic sphere dimer in between MS and substrate. Size of each nanosphere in this dimer is 30 nm and distance between two nanospheres (nanogap) is 4 nm.

Fig. 2
Fig. 2

Electric field distribution of PNJ emerging from shadow side of a silica MS (d = 1.80 µm and ns = 1.45) illuminating with focused Gaussian beam from objective lens of NA: 0.4. Here the incident electric field and refractive index of the surrounding medium (nm) are 1 V/m and 1.0, respectively.

Fig. 3
Fig. 3

Panel A shows the electric field distribution on the surface of a gold nanosphere (size of the each nanosphere = 30 nm) dimer illuminated with focused Gaussian beam from objective lens of NA: 0.90. Panels B and C show the electric field distribution on the surface of the same dimer excited with PNJ of a MS generated by a focused Gaussian beam from objective lens of NA: 0.90 and 0.40, respectively. Panel D shows the advantage of PNJ for obtaining the maximum electric field enhancment at the nanogap of a dimer for different excitation wavelengths.

Fig. 4
Fig. 4

Enhancement of electric field at the nanogap of a silver nanosphere dimer (panel A) and silica core-gold nanoshell dimer (panel B) in the presence and absence of PNJ. Size of each silver nanosphere is 30 nm. In nanoshell dimer, core diameter, shell thickness, and nanogap size are 25 nm, 5 nm, and 4 nm, respectively. For all the simulations, the incident electric field is 1 V/m.

Fig. 5
Fig. 5

Illustration of an experimental setup for PNJ mediated SEF technique. The magnified portion shows the fluorescence photons emitted by a labeled protein molecule residing in a nanogap of a symmetric metal core-dielectric nanoshell dimer probed with PNJ emerging from shadow side of a dielectric MS.

Fig. 6
Fig. 6

Panel A and B respectively, show the electric field distribution on the surface of a silver core-silica nanoshell (the value of core radius, shell thickness, nanogap size are 25 nm, 5 nm, and 4 nm, respectively) dimer illuminated with focused Gaussian beam and PNJ of a dielectric MS. For these simulations, the excitation wavelength and incident electric field (E0) are 394 nm and 1 V/m, respectively.

Fig. 7
Fig. 7

The enhancement in the electric field intensity at nanogap of a silver core-silica nanoshell dimer placed on a silica substrate, in the conventional and PNJ mediated SEF technique. For all the simulations, the core diameter, shell thickness, and nanogap size are 25 nm, 5 nm, and 4 nm, respectively. The incident electric field is 1 V/m.

Fig. 8
Fig. 8

Panel A shows the 3D modeling of a lollipop shaped dielectric microstructure in COMSOL software. Panel B shows the electric field distribution of PNJ emerging from the microstructure upon plane wave illumination. Here refractive indices of the microstructure and surrounding medium are 1.45 and 1.0, respectively.

Tables (1)

Tables Icon

Table 1 Enhancement of SERS signal of single molecule (ζ) in the PNJ mediated SERS technique relative to the conventional SERS technique.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ξ= γ em γ em o = γ ex γ ex o q q o
γ ex γ ex o = | E loc | 2 | E 0 | 2

Metrics