Abstract

Polymer-dispersed liquid crystals (PDLCs) modulate the amplitude and optical phase of light. The optical phase modulation of PDLC can be dissected into two parts: Kerr phase and orientational phase according to the electro-optical (EO) response. We investigated the origins of the Kerr and orientational phases in PDLCs and their connection with the two-step EO response. The Kerr phase is attributed to LC orientation in the center of LC droplets. The orientational phase results from orientation of LC molecules near LC–polymer interfaces. Both phases can be adjusted by varying the droplet size. The two-step EO response in small droplets (<333 nm) is related to the Kerr and orientational phases, and possibly to rotation of point defects. A modified PDLC model considering the Kerr and orientational phases is proposed. Our findings suggest the possibility of versatile photonic devices using pure optical phase modulation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix

Ji Hoon Yu, Hung-Shan Chen, Po-Ju Chen, Ki Hoon Song, Seong Cheol Noh, Jae Myeong Lee, Hongwen Ren, Yi-Hsin Lin, and Seung Hee Lee
Opt. Express 23(13) 17337-17344 (2015)

Orientational photorefractive effects observed in polymer-dispersed liquid crystals

Hiroshi Ono and Nobuhiro Kawatsuki
Opt. Lett. 22(15) 1144-1146 (1997)

Bistability and multistability in polymer-dispersed liquid-crystal films

Doina Manaila-Maximean, Constantin Rosu, and Rodica Bena
J. Opt. Soc. Am. B 15(12) 2975-2978 (1998)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
    [Crossref]
  2. J. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.16, 68 (1985).
  3. P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1–3), 167–172 (2005).
    [Crossref]
  4. C. Levallois, B. Caillaud, J. L. de Bougrenet de la Tocnaye, L. Dupont, A. Lecorre, H. Folliot, O. Dehaese, and S. Loualiche, “Nano-polymer-dispersed liquid crystal as phase modulator for a tunable vertical-cavity surface-emitting laser at 1.55 µm,” Appl. Opt. 45(33), 8484–8490 (2006).
    [Crossref] [PubMed]
  5. H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
    [Crossref]
  6. S. Massenot, R. Chevallier, J.-L. de Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275(2), 318–323 (2007).
    [Crossref]
  7. S. G. Kang and J. H. Kim, “Optically-isotropic nanoencapsulated liquid crystal displays based on Kerr effect,” Opt. Express 21(13), 15719–15727 (2013).
    [Crossref] [PubMed]
  8. S. S. Gandhi and L. C. Chien, “High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals,” Opt. Mater. 54, 300–305 (2016).
    [Crossref]
  9. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995), Chap. 4.
  10. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997), Chap. 5.
  11. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006), Chap. 11.
  12. S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
    [Crossref] [PubMed]
  13. S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
    [Crossref] [PubMed]
  14. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  15. G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light,” Appl. Opt. 50(16), 2326–2333 (2011).
    [Crossref] [PubMed]
  16. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
    [Crossref]
  17. F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
    [Crossref] [PubMed]
  18. M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
    [Crossref]
  19. S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
    [Crossref]
  20. S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
    [Crossref]
  21. J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
    [Crossref]
  22. R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
    [Crossref]
  23. M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041706 (2011).
    [Crossref] [PubMed]
  24. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  25. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
    [Crossref]
  26. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010).
    [Crossref]
  27. H. S. Chen, S. Y. Ni, and Y. H. Lin, “An experimental investigation of electrically induced-birefringence of Kerr effect in polymer-stabilized blue phase liquid crystals resulting from orientations of liquid crystals,” Appl. Phys. Lett. 101(9), 093501 (2012).
    [Crossref]
  28. P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3(11), 1543–1559 (1988).
    [Crossref]
  29. S. C. Jain and D. K. Rout, “Electro-optic response of polymer dispersed liquid-crystal films,” J. Appl. Phys. 70(11), 6988–6992 (1991).
    [Crossref]
  30. B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5(5), 1453–1465 (1989).
    [Crossref]
  31. L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81(10), 6612–6615 (1997).
    [Crossref]
  32. J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
    [Crossref] [PubMed]
  33. V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Effective medium theory of polymer dispersed liquid crystal droplet systems: II. Partially oriented bipolar droplets,” J. Phys. D Appl. Phys. 30(23), 3253–3266 (1997).
    [Crossref]
  34. J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
    [Crossref] [PubMed]
  35. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53(10), 958–961 (1984).
    [Crossref]
  36. J. C. Philips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
    [Crossref]
  37. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993), Chap. 2.
  38. D. C. Elton, “Stretched exponential relaxation.” (2013).
  39. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
    [Crossref]

2016 (1)

S. S. Gandhi and L. C. Chien, “High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals,” Opt. Mater. 54, 300–305 (2016).
[Crossref]

2015 (1)

2013 (1)

2012 (1)

H. S. Chen, S. Y. Ni, and Y. H. Lin, “An experimental investigation of electrically induced-birefringence of Kerr effect in polymer-stabilized blue phase liquid crystals resulting from orientations of liquid crystals,” Appl. Phys. Lett. 101(9), 093501 (2012).
[Crossref]

2011 (3)

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041706 (2011).
[Crossref] [PubMed]

G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light,” Appl. Opt. 50(16), 2326–2333 (2011).
[Crossref] [PubMed]

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

2010 (5)

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[Crossref] [PubMed]

2008 (1)

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[Crossref]

2007 (1)

S. Massenot, R. Chevallier, J.-L. de Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275(2), 318–323 (2007).
[Crossref]

2006 (1)

2005 (4)

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1–3), 167–172 (2005).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

2002 (2)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

1997 (2)

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81(10), 6612–6615 (1997).
[Crossref]

V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Effective medium theory of polymer dispersed liquid crystal droplet systems: II. Partially oriented bipolar droplets,” J. Phys. D Appl. Phys. 30(23), 3253–3266 (1997).
[Crossref]

1996 (1)

J. C. Philips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
[Crossref]

1993 (1)

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

1991 (1)

S. C. Jain and D. K. Rout, “Electro-optic response of polymer dispersed liquid-crystal films,” J. Appl. Phys. 70(11), 6988–6992 (1991).
[Crossref]

1990 (1)

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

1989 (1)

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5(5), 1453–1465 (1989).
[Crossref]

1988 (2)

P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3(11), 1543–1559 (1988).
[Crossref]

S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
[Crossref] [PubMed]

1986 (2)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

1984 (1)

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53(10), 958–961 (1984).
[Crossref]

Abrahams, E.

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53(10), 958–961 (1984).
[Crossref]

Altman, J.

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

Anderson, P. W.

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53(10), 958–961 (1984).
[Crossref]

Araoka, F.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Aya, S.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Basile, F.

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Bloisi, F.

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Caillaud, B.

Chanclou, P.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1–3), 167–172 (2005).
[Crossref]

Chen, H. S.

J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
[Crossref] [PubMed]

H. S. Chen, S. Y. Ni, and Y. H. Lin, “An experimental investigation of electrically induced-birefringence of Kerr effect in polymer-stabilized blue phase liquid crystals resulting from orientations of liquid crystals,” Appl. Phys. Lett. 101(9), 093501 (2012).
[Crossref]

Chen, K. M.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

Chen, P. J.

Cheng, H. C.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Chevallier, R.

S. Massenot, R. Chevallier, J.-L. de Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275(2), 318–323 (2007).
[Crossref]

Chien, L. C.

S. S. Gandhi and L. C. Chien, “High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals,” Opt. Mater. 54, 300–305 (2016).
[Crossref]

Choi, S. W.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[Crossref]

Cornu, C.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1–3), 167–172 (2005).
[Crossref]

Cox, S. J.

V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Effective medium theory of polymer dispersed liquid crystal droplet systems: II. Partially oriented bipolar droplets,” J. Phys. D Appl. Phys. 30(23), 3253–3266 (1997).
[Crossref]

de Bougrenet de la Tocnaye, J. L.

de Bougrenet de la Tocnaye, J.-L.

S. Massenot, R. Chevallier, J.-L. de Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275(2), 318–323 (2007).
[Crossref]

Dehaese, O.

Doane, J. W.

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5(5), 1453–1465 (1989).
[Crossref]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Drzaic, P. S.

P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3(11), 1543–1559 (1988).
[Crossref]

Dupont, L.

Elizondo, P.

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

Elton, D. C.

D. C. Elton, “Stretched exponential relaxation.” (2013).

Erdmann, J. H.

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5(5), 1453–1465 (1989).
[Crossref]

Fan, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Fergason, J.

J. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.16, 68 (1985).

Folliot, H.

Gandhi, S. S.

S. S. Gandhi and L. C. Chien, “High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals,” Opt. Mater. 54, 300–305 (2016).
[Crossref]

Gauza, S.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Gondek, E.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Hadjichristov, G. B.

Haseba, Y.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Higuchi, H.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Ishikawa, K.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Jain, S. C.

S. C. Jain and D. K. Rout, “Electro-optic response of polymer dispersed liquid-crystal films,” J. Appl. Phys. 70(11), 6988–6992 (1991).
[Crossref]

Jiao, M.

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041706 (2011).
[Crossref] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[Crossref] [PubMed]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kang, S. G.

Karapinar, R.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

Khanarian, G.

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

Kikuchi, H.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kim, J. H.

Kityk, I. V.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

Klosowicz, S. J.

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Le, K. V.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Lecorre, A.

Lee, J. M.

Lee, S. H.

Leslie, T. M.

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

Levallois, C.

Li, Y.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Lin, Y. H.

J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
[Crossref] [PubMed]

H. S. Chen, S. Y. Ni, and Y. H. Lin, “An experimental investigation of electrically induced-birefringence of Kerr effect in polymer-stabilized blue phase liquid crystals resulting from orientations of liquid crystals,” Appl. Phys. Lett. 101(9), 093501 (2012).
[Crossref]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Loualiche, S.

Lucchetta, D. E.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

Majchrowski, A.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

Manni, A.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

Marinov, Y. G.

Massenot, S.

S. Massenot, R. Chevallier, J.-L. de Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275(2), 318–323 (2007).
[Crossref]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Ni, S. Y.

H. S. Chen, S. Y. Ni, and Y. H. Lin, “An experimental investigation of electrically induced-birefringence of Kerr effect in polymer-stabilized blue phase liquid crystals resulting from orientations of liquid crystals,” Appl. Phys. Lett. 101(9), 093501 (2012).
[Crossref]

Niziol, J.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Noh, S. C.

Palmer, R. G.

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53(10), 958–961 (1984).
[Crossref]

Parriaux, O.

S. Massenot, R. Chevallier, J.-L. de Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275(2), 318–323 (2007).
[Crossref]

Petrov, A. G.

Philips, J. C.

J. C. Philips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
[Crossref]

Pisarek, J.

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

Rakus, P.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Rao, L.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[Crossref] [PubMed]

Ren, H.

Ren, H. W.

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Reshak, A. H.

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

Reshetnyak, V. Y.

V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Effective medium theory of polymer dispersed liquid crystal droplet systems: II. Partially oriented bipolar droplets,” J. Phys. D Appl. Phys. 30(23), 3253–3266 (1997).
[Crossref]

Rout, D. K.

S. C. Jain and D. K. Rout, “Electro-optic response of polymer dispersed liquid-crystal films,” J. Appl. Phys. 70(11), 6988–6992 (1991).
[Crossref]

Roy, M.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1–3), 167–172 (2005).
[Crossref]

Sansone, M. J.

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

Simoni, F.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Sluckin, T. J.

V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Effective medium theory of polymer dispersed liquid crystal droplet systems: II. Partially oriented bipolar droplets,” J. Phys. D Appl. Phys. 30(23), 3253–3266 (1997).
[Crossref]

Song, K. H.

Stein, D. L.

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53(10), 958–961 (1984).
[Crossref]

Stiller, M.

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

Takezoe, H.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Tkaczyk, S.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Vicari, L.

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81(10), 6612–6615 (1997).
[Crossref]

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Vinouze, B.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1–3), 167–172 (2005).
[Crossref]

Weglowski, R.

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Wojciechowski, A.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Wu, B. G.

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5(5), 1453–1465 (1989).
[Crossref]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Wu, S. T.

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041706 (2011).
[Crossref] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[Crossref] [PubMed]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

Yamamoto, S. I.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[Crossref]

Yan, J.

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041706 (2011).
[Crossref] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[Crossref] [PubMed]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yu, J. H.

Zumer, S.

S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
[Crossref] [PubMed]

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[Crossref]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

H. S. Chen, S. Y. Ni, and Y. H. Lin, “An experimental investigation of electrically induced-birefringence of Kerr effect in polymer-stabilized blue phase liquid crystals resulting from orientations of liquid crystals,” Appl. Phys. Lett. 101(9), 093501 (2012).
[Crossref]

J. Appl. Phys. (4)

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81(10), 6612–6615 (1997).
[Crossref]

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, “Large Kerr effects in transparent encapsulated liquid crystals,” J. Appl. Phys. 67(9), 4253–4259 (1990).
[Crossref]

S. C. Jain and D. K. Rout, “Electro-optic response of polymer dispersed liquid-crystal films,” J. Appl. Phys. 70(11), 6988–6992 (1991).
[Crossref]

J. Disp. Technol. (1)

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Effective medium theory of polymer dispersed liquid crystal droplet systems: II. Partially oriented bipolar droplets,” J. Phys. D Appl. Phys. 30(23), 3253–3266 (1997).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Liq. Cryst. (2)

P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3(11), 1543–1559 (1988).
[Crossref]

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5(5), 1453–1465 (1989).
[Crossref]

Mater. Lett. (1)

R. Węgłowski, S. J. Kłosowicz, A. Majchrowski, S. Tkaczyk, A. H. Reshak, J. Pisarek, and I. V. Kityk, “Enhancement of the Kerr response in polymer-dispersed liquid crystal complexes due to incorporation of BiB3O6 nanocrystallites,” Mater. Lett. 64(10), 1176–1178 (2010).
[Crossref]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Opt. Commun. (3)

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1–3), 167–172 (2005).
[Crossref]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

S. Massenot, R. Chevallier, J.-L. de Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275(2), 318–323 (2007).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

S. S. Gandhi and L. C. Chien, “High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals,” Opt. Mater. 54, 300–305 (2016).
[Crossref]

Phys. Rev. A Gen. Phys. (2)

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041706 (2011).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53(10), 958–961 (1984).
[Crossref]

Rep. Prog. Phys. (1)

J. C. Philips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
[Crossref]

Other (6)

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993), Chap. 2.

D. C. Elton, “Stretched exponential relaxation.” (2013).

J. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.16, 68 (1985).

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995), Chap. 4.

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997), Chap. 5.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006), Chap. 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 SEM images of (a) sample A, (b) sample B, (c) sample C, and (d) sample D.
Fig. 2
Fig. 2 Transmittance and visibility as functions of an applied voltage.
Fig. 3
Fig. 3 Interference fringes of samples A, B, C, and D at V = 0 and 40 Vrms . The right-hand image (air) is the fringe pattern obtained after the samples were removed.
Fig. 4
Fig. 4 Phase shift as a function of applied voltage at λ = 633 nm.
Fig. 5
Fig. 5 Phase shift as a function of the square of the electric field (λ = 633 nm). Symbols are experimental results from Fig. 4; solid lines are the Kerr phase based on fitted results of the Kerr effect.
Fig. 6
Fig. 6 Optical phase shift of the samples as a function of time, where the voltage (40 Vrms) was turned off at t = 0. Black lines show experimental results; red dotted lines are fitting results for P(t).
Fig. 7
Fig. 7 Phase shift vs. LC droplet diameter.
Fig. 8
Fig. 8 Time constants of relaxation response in PDLC samples with different droplet size, τ1 and τ2, vs. LC droplet diameter.
Fig. 9
Fig. 9 Schematic illustration of droplets with the electric field off and on. Curved lines in the droplets are director field lines; bold lines indicate the orientation of the bipolar axis.
Fig. 10
Fig. 10 Phase shift vs. applied electric field for different LC volume fractions.
Fig. 11
Fig. 11 Kerr and orientational phases in PDLC. (a), (b), (c) PDLC with small LC droplets. (d), (e), (f) PDLC with large LC droplets.

Tables (2)

Tables Icon

Table 1 Summary of Sample Data

Tables Icon

Table 2 Fitting Parameters of P(t) for Samples

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ theory (V)=Δn'(V) 2π λ dF,
Δ ϕ Kerr (V)= 2π×d×F λ ×Δ n Kerr (V).
τ off = γ 1 × a 2 K deform ×( l 2 1 ) ,
F el =πW R 2 ( L L 0 ) 2 ,
S=( 3 2 ( nL ) 1 2 ).
ε ˜ = ε + 1 3 ( 1S ) ε a ,
ε ˜ a =S ε a .
Q= 0 π/2 ( 3 2 cos 2 θ 1 2 )p( θ,V )sinθdθ .
V ˜ = ( ΔεR 6πW ) 1/2 V L ,
Δε= ( ε ˜ + ε ˜ a ) ε p 2 3 + ε ˜ + ε ˜ a 3 ε p ε ˜ ε p 2 3 + ε ˜ 3 ε p .
ε ¯ xx =( 1 η V ) n p 2 + η V ε xx,eff =( 1 η V ) n P 2 + η V { ε ,eff + 2 3 ε a,eff [ 1Q( V ˜ ) ] },

Metrics