Abstract

With Cr4+:YAG as a saturable absorber, a passively Q-switched self-frequency-doubled (SFD) laser based on a trigonal Nd:Ca3NbGa3Si2O14 (Nd:CNGS) silicate crystal was demonstrated for the first time. The maximum average output power at 532 nm was 16.2 mW, and the corresponding pulse repetition frequency, single pulse energy, pulse duration and peak power were 2.25 kHz, 7.2 μJ, 13.7 ns, 0.53 kW, respectively. We also present a rate-equation model of such a passively Q-switched SFD laser showing a good agreement with the experiment. Nd:CNGS is a promising pulse SFD material for miniature all-solid-state visible light sources.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 2.6-mJ 400-kW pulses from a compact Yb:Gd3Ga5O12 laser repetitively Q-switched by an acousto-optic modulator

Junhai Liu, Xiaowen Chen, Wenjuan Han, Qibiao Dai, Kui Wu, and Huaijin Zhang
Opt. Express 21(22) 26605-26611 (2013)

Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, and J. Xu
Appl. Opt. 53(27) 6119-6122 (2014)

Passive Q switching of Yb:CNGS lasers by Cr4+:YAG and V3+:YAG saturable absorbers

Xuzhao Zhang, Pavel Loiko, Josep Maria Serres, Venkatesan Jambunathan, Zhengping Wang, Shiyi Guo, Anatoly Yasukevich, Antonio Lucianetti, Tomas Mocek, Uwe Griebner, Valentin Petrov, Xinguang Xu, Magdalena Aguiló, Francesc Díaz, and Xavier Mateos
Appl. Opt. 57(28) 8236-8241 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
    [Crossref]
  2. H. Yu, N. Zong, Z. Pan, H. Zhang, J. Wang, Z. Wang, and Z. Xu, “Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm,” Opt. Lett. 36(19), 3852–3854 (2011).
    [Crossref] [PubMed]
  3. P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
    [Crossref]
  4. X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
    [Crossref]
  5. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Sub-nanosecond Yb:KLu(WO4)2 microchip laser,” Opt. Lett. 41(11), 2620–2623 (2016).
    [Crossref] [PubMed]
  6. C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
    [Crossref]
  7. R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser,” Appl. Phys. Express 6(3), 032703 (2013).
    [Crossref]
  8. H. Tanaka, R. Kariyama, K. Iijima, K. Hirosawa, and F. Kannari, “Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser,” Opt. Express 23(15), 19382–19395 (2015).
    [Crossref] [PubMed]
  9. J. Bartschke, K. J. Boller, R. Wallenstein, I. V. Klimov, V. B. Tsvetkov, and I. A. Shcherbakov, “Diode-pumped passively Q-switched self-frequency-doubling Nd:YAB laser,” J. Opt. Soc. Am. B 14(12), 3452–3456 (1997).
    [Crossref]
  10. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
    [Crossref]
  11. D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
    [Crossref]
  12. X. Y. Zhang, S. Z. Zhao, Q. P. Wang, S. J. Zhang, L. K. Sun, X. M. Liu, S. J. Zhang, and H. C. Chen, “Passively Q-switched self-frequency-doubled Nd3+:GdCa4O(BO3)3 laser,” J. Opt. Soc. Am. B 18(6), 770–779 (2001).
    [Crossref]
  13. X. T. Zhang, X. Z. Zhang, S. Y. Guo, J. L. He, K. Z. Han, F. Lou, B. T. Zhang, R. H. Wang, and X. M. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
    [Crossref]
  14. F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
    [Crossref]
  15. N. Pavel, J. Saikawa, and T. Taira, “Diode end-pumped passively Q-switched Nd:YAG laser intra-cavity frequency doubled by LBOcrystal,” Opt. Commun. 195(1-4), 233–240 (2001).
    [Crossref]
  16. Y. Yu, J. Wang, H. Zhang, Z. Wang, H. Yu, and M. Jiang, “Continuous wave and Q-switched laser output of laser-diode-end-pumped disordered Nd:LGS laser,” Opt. Lett. 34, 467–469 (2009).
    [Crossref] [PubMed]
  17. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999).
    [Crossref]
  18. A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
    [Crossref]
  19. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
    [Crossref] [PubMed]
  20. L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
    [Crossref]
  21. N. I. Leonyuk and L. I. Leonyuk, “Growth and characterization of RM3(BO3)4 crystals,” Prog. Cryst. Growth Charact. Mater. 31(3–4), 179–278 (1995).
    [Crossref]

2017 (2)

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

2016 (4)

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Sub-nanosecond Yb:KLu(WO4)2 microchip laser,” Opt. Lett. 41(11), 2620–2623 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (1)

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

2013 (2)

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
[Crossref]

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

2011 (1)

2009 (1)

2001 (3)

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

N. Pavel, J. Saikawa, and T. Taira, “Diode end-pumped passively Q-switched Nd:YAG laser intra-cavity frequency doubled by LBOcrystal,” Opt. Commun. 195(1-4), 233–240 (2001).
[Crossref]

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, S. J. Zhang, L. K. Sun, X. M. Liu, S. J. Zhang, and H. C. Chen, “Passively Q-switched self-frequency-doubled Nd3+:GdCa4O(BO3)3 laser,” J. Opt. Soc. Am. B 18(6), 770–779 (2001).
[Crossref]

2000 (1)

D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
[Crossref]

1999 (1)

1997 (2)

J. Bartschke, K. J. Boller, R. Wallenstein, I. V. Klimov, V. B. Tsvetkov, and I. A. Shcherbakov, “Diode-pumped passively Q-switched self-frequency-doubling Nd:YAB laser,” J. Opt. Soc. Am. B 14(12), 3452–3456 (1997).
[Crossref]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

1995 (1)

N. I. Leonyuk and L. I. Leonyuk, “Growth and characterization of RM3(BO3)4 crystals,” Prog. Cryst. Growth Charact. Mater. 31(3–4), 179–278 (1995).
[Crossref]

Abe, R.

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Aguiló, M.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Sub-nanosecond Yb:KLu(WO4)2 microchip laser,” Opt. Lett. 41(11), 2620–2623 (2016).
[Crossref] [PubMed]

Aka, G.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

Bartschke, J.

Benitez, J. M.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

Boller, K. J.

Braun, B.

Chai, B. H. T.

D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
[Crossref]

Chen, F. F.

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Chen, H. C.

Chen, L.

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
[Crossref]

Chin, A. K.

D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
[Crossref]

Choi, S. Y.

Chu, H. W.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Dawes, J. M.

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Dekker, P.

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Díaz, F.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Sub-nanosecond Yb:KLu(WO4)2 microchip laser,” Opt. Lett. 41(11), 2620–2623 (2016).
[Crossref] [PubMed]

Fluck, R.

Gini, E.

Griebner, U.

Guo, S. Y.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

X. T. Zhang, X. Z. Zhang, S. Y. Guo, J. L. He, K. Z. Han, F. Lou, B. T. Zhang, R. H. Wang, and X. M. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
[Crossref]

Gusakova, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Hammons, D. A.

D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
[Crossref]

Han, K. Z.

Han, S.

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
[Crossref]

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
[Crossref]

He, J. L.

Hirosawa, K.

Hou, S.

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Huber, G.

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Hubert, H.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

Iijima, K.

Jiang, M.

Jollay, R.

D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
[Crossref]

Kahn-Harari, A.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

Kannari, F.

H. Tanaka, R. Kariyama, K. Iijima, K. Hirosawa, and F. Kannari, “Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser,” Opt. Express 23(15), 19382–19395 (2015).
[Crossref] [PubMed]

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Kariyama, R.

Keller, U.

Kim, M. H.

Klimov, I. V.

Kojou, J.

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Kränkel, C.

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Kuleshov, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Lan, R.

Leonyuk, L. I.

N. I. Leonyuk and L. I. Leonyuk, “Growth and characterization of RM3(BO3)4 crystals,” Prog. Cryst. Growth Charact. Mater. 31(3–4), 179–278 (1995).
[Crossref]

Leonyuk, N. I.

N. I. Leonyuk and L. I. Leonyuk, “Growth and characterization of RM3(BO3)4 crystals,” Prog. Cryst. Growth Charact. Mater. 31(3–4), 179–278 (1995).
[Crossref]

Li, J.

Li, T.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Liu, X. M.

Liu, Y.

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Liu, Y. Q.

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Loiko, P.

Lou, F.

Lu, D. Z.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Luan, C.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Marzahl, D.-T.

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Masuda, K.

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Mateos, X.

Metz, P. W.

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Moglia, F.

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Moser, M.

Mougel, F.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

Pan, Y.

Pan, Z.

Paschotta, R.

Pavel, N.

N. Pavel, J. Saikawa, and T. Taira, “Diode end-pumped passively Q-switched Nd:YAG laser intra-cavity frequency doubled by LBOcrystal,” Opt. Commun. 195(1-4), 233–240 (2001).
[Crossref]

Petrov, V.

Piper, J. A.

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Qiao, J. P.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Qiao, W. C.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Ren, J. Y.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Richardson, M.

D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
[Crossref]

Rotermund, F.

Saikawa, J.

N. Pavel, J. Saikawa, and T. Taira, “Diode end-pumped passively Q-switched Nd:YAG laser intra-cavity frequency doubled by LBOcrystal,” Opt. Commun. 195(1-4), 233–240 (2001).
[Crossref]

Serres, J. M.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Sub-nanosecond Yb:KLu(WO4)2 microchip laser,” Opt. Lett. 41(11), 2620–2623 (2016).
[Crossref] [PubMed]

Shcherbakov, I. A.

Shi, X. Z.

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Spühler, G. J.

Sun, L. K.

Taira, T.

N. Pavel, J. Saikawa, and T. Taira, “Diode end-pumped passively Q-switched Nd:YAG laser intra-cavity frequency doubled by LBOcrystal,” Opt. Commun. 195(1-4), 233–240 (2001).
[Crossref]

Tanaka, H.

Tsvetkov, V. B.

Vivien, D.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

Wallenstein, R.

Wang, H. W.

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Wang, J.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
[Crossref]

H. Yu, N. Zong, Z. Pan, H. Zhang, J. Wang, Z. Wang, and Z. Xu, “Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm,” Opt. Lett. 36(19), 3852–3854 (2011).
[Crossref] [PubMed]

Y. Yu, J. Wang, H. Zhang, Z. Wang, H. Yu, and M. Jiang, “Continuous wave and Q-switched laser output of laser-diode-end-pumped disordered Nd:LGS laser,” Opt. Lett. 34, 467–469 (2009).
[Crossref] [PubMed]

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Wang, Q. P.

Wang, R. H.

Wang, Y.

Wang, Z.

Wang, Z. P.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Xu, J.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Xu, X.

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
[Crossref]

Xu, X. D.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Xu, X. G.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Xu, Z.

Yang, K. J.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Yasukevich, A.

Yasukevich, A. S.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Yu, F. P.

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Yu, H.

Yu, H. H.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Yu, Y.

Yumashev, K.

Yumashev, K. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Zhang, B. T.

Zhang, G.

Zhang, H.

Zhang, S. J.

Zhang, X. T.

Zhang, X. Y.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, S. J. Zhang, L. K. Sun, X. M. Liu, S. J. Zhang, and H. C. Chen, “Passively Q-switched self-frequency-doubled Nd3+:GdCa4O(BO3)3 laser,” J. Opt. Soc. Am. B 18(6), 770–779 (2001).
[Crossref]

Zhang, X. Z.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

X. T. Zhang, X. Z. Zhang, S. Y. Guo, J. L. He, K. Z. Han, F. Lou, B. T. Zhang, R. H. Wang, and X. M. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
[Crossref]

Zhao, J.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Zhao, S. Z.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, S. J. Zhang, L. K. Sun, X. M. Liu, S. J. Zhang, and H. C. Chen, “Passively Q-switched self-frequency-doubled Nd3+:GdCa4O(BO3)3 laser,” J. Opt. Soc. Am. B 18(6), 770–779 (2001).
[Crossref]

Zhao, X.

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Zheng, L. H.

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

Zhou, Y.

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Zong, N.

Appl. Opt. (1)

Appl. Phys. Express (1)

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Appl. Phys. Lett. (1)

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013).
[Crossref]

CrystEngComm (2)

X. Z. Zhang, Y. Zhou, J. Y. Ren, D. Z. Lu, H. H. Yu, Z. P. Wang, S. Y. Guo, and X. G. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

F. F. Chen, F. P. Yu, S. Hou, Y. Q. Liu, Y. Zhou, X. Z. Shi, H. W. Wang, Z. P. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Luan, X. Y. Zhang, K. J. Yang, J. Zhao, S. Z. Zhao, T. Li, W. C. Qiao, H. W. Chu, J. P. Qiao, J. Wang, L. H. Zheng, X. D. Xu, and J. Xu, “High-peak power passively Q-switched 2-μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1600105 (2017).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (1)

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Opt. Commun. (3)

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

N. Pavel, J. Saikawa, and T. Taira, “Diode end-pumped passively Q-switched Nd:YAG laser intra-cavity frequency doubled by LBOcrystal,” Opt. Commun. 195(1-4), 233–240 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[Crossref]

Opt. Mater. Express (1)

Prog. Cryst. Growth Charact. Mater. (1)

N. I. Leonyuk and L. I. Leonyuk, “Growth and characterization of RM3(BO3)4 crystals,” Prog. Cryst. Growth Charact. Mater. 31(3–4), 179–278 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Experimental setup of the PQS SFD Nd:CNGS laser: LD – laser diode, OCS – optical coupling system, PM – pump mirror, SA – saturable absorber, OC – output coupler; (b) typical emission spectrum of this laser.
Fig. 2
Fig. 2 SFD Nd:CNGS laser: (a) output power for CW and PQS operation modes; (b) single pulse energy and pulse repetition frequency (PRF), (c) pulse duration and peak power, (d) oscilloscope trace of the single Q-switched pulse at Pabs = 2.95 W (for PQS operation mode). Inset: the corresponding pulse train with a repetition rate of 2.25 kHz. Symbols in (a)-(c) – experimental data, curves – numerical modelling.
Fig. 3
Fig. 3 Calculated (a) pulse trains and (b) single Q-switched pulses for the green output of the PQS SFD Nd:CNGS laser. In (a), the pulse trains are shifted for the sake of clarity, the time is counted from the moment of appearance of the first pulse. In (b), the time scale for the single pulses is shifted.

Tables (1)

Tables Icon

Table 1 Material and Laser Cavity Parameters Used for the Calculations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d I L dt = cμ n 1 [ k L k loss k loss SH l SA l AM k SA ] I L +I ' noise ,
d N 3 dt = I p h ν p k p I L h ν L k L N 3 τ ,
d N GS dt = I L h ν L σ GSA N GS + N SA N GS τ rec .
k L = N 3 σ SE L ,
k loss = 1 2 l AM [ln(1 T OC )+ln(1L)],
k loss SH = ξ 2 l AM I L , where ξ= 2 π 2 d eff 2 l AM 2 ε 0 n 1 2 n 2 λ 2 2 ,
k SA = σ GSA N GS + σ ESA ( N SA N GS ).
I p = P inc π w p 2 1exp( k p l AM ) k p l AM , where k p =( N Nd N 3 ) σ abs p .
P out SH (t)= V L k loss SH I L (t)= π w L 2 4 ξ I L (t) 2 .

Metrics