Abstract

A kHz-order linewidth controllable 1550 nm single-frequency fiber laser (SFFL) is demonstrated for the first time to our best knowledge. The control of the linewidth is realized by using a low-pass filtered white Gaussian noise (WGN) signal applied on a fiber stretcher in an optical feedback loop. Utilizing WGN signals with different signal amplitudes An and different cutoff frequencies fc, the linewidths are availably controlled in a wide range from 0.8 to 353 kHz. The obtained optical signal-to-noise ratio (OSNR) is more than 72.0 dB, and the relative intensity noise (RIN) at frequency greater than 40 MHz reaches −148.5 dB/Hz which approaches the shot noise limit (−152.9 dB/Hz). This kHz-order linewidth controllable SFFL is meaningful and valuable, for optimizing the receiver sensitivity and bit error rate (BER) performance of the coherent optical communication system based on high-order quadrature amplitude modulation (QAM).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser

Changsheng Yang, Qilai Zhao, Zhouming Feng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Opt. Express 24(26) 29794-29799 (2016)

Noise-sidebands-free and ultra-low-RIN 1.5  μm single-frequency fiber laser towards coherent optical detection

Qilai Zhao, Zhitao Zhang, Bo Wu, Tianyi Tan, Changsheng Yang, Jiulin Gan, Huihui Cheng, Zhouming Feng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Photon. Res. 6(4) 326-331 (2018)

295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of −120 dB/Hz

Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 24(3) 2737-2748 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
    [Crossref] [PubMed]
  2. S. W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37(18), 3861–3863 (2012).
    [Crossref] [PubMed]
  3. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  4. S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
    [Crossref]
  5. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
    [Crossref] [PubMed]
  6. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  7. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  8. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
    [Crossref]
  9. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
    [Crossref]
  10. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
    [Crossref] [PubMed]
  11. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conference (OFC) (2008), pp. 1–3.
    [Crossref]
  12. Y. Wu, J. Li, C. Zhao, Y. Zhao, F. Zhang, and Z. Chen, “Coherent optical OFDM scheme with inter-carrier interference self-cancellation and common phase error compensation,” Chin. Opt. Lett. 8(7), 634–638 (2010).
    [Crossref]
  13. W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
    [Crossref]
  14. X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
    [Crossref]
  15. Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, “560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 54(24), 7258–7263 (2015).
    [Crossref] [PubMed]
  16. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
    [Crossref]
  17. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
    [Crossref]
  18. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18(4), 3284–3297 (2010).
    [Crossref] [PubMed]
  19. S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
    [Crossref] [PubMed]
  20. X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24(17), 18907–18916 (2016).
    [Crossref] [PubMed]
  21. Q. Zhao, Y. Zhang, W. Lin, Z. Wu, C. Li, C. Yang, Y. Zhang, Z. Feng, M. Peng, H. Deng, Z. Yang, and S. Xu, “Frequency noise of distributed Bragg reflector single-frequency fiber laser,” Opt. Express 25(11), 12601–12610 (2017).
    [Crossref]
  22. C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
    [Crossref]
  23. G. D. Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [Crossref] [PubMed]
  24. G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
    [Crossref]
  25. Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
    [Crossref] [PubMed]
  26. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
    [Crossref]
  27. S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
    [Crossref]
  28. C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

2015 (3)

2014 (1)

2013 (2)

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
[Crossref] [PubMed]

2012 (2)

S. W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37(18), 3861–3863 (2012).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

2011 (4)

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

2010 (5)

2009 (1)

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[Crossref]

2008 (3)

2005 (1)

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

1991 (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

Bao, H.

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Besnard, P.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Blin, S.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Chen, D.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Chen, Z.

Chiow, S. W.

Clairon, A.

Deng, H.

Domenico, G. D.

Dong, X.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Du, W.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Fan, W.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Feng, Z.

Q. Zhao, Y. Zhang, W. Lin, Z. Wu, C. Li, C. Yang, Y. Zhang, Z. Feng, M. Peng, H. Deng, Z. Yang, and S. Xu, “Frequency noise of distributed Bragg reflector single-frequency fiber laser,” Opt. Express 25(11), 12601–12610 (2017).
[Crossref]

X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24(17), 18907–18916 (2016).
[Crossref] [PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
[Crossref]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
[Crossref]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Feng, Z. M.

Fox, R. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Gan, J.

C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
[Crossref]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

Gong, W.

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Guo, H.

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hogan, J. M.

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Huang, X.

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Jiang, H.

Jiang, Y. Y.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Jiang, Z. H.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kasevich, M. A.

Kéfélian, F.

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kovachy, T.

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Lemke, N. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Lemonde, P.

Leng, J.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, C.

Q. Zhao, Y. Zhang, W. Lin, Z. Wu, C. Li, C. Yang, Y. Zhang, Z. Feng, M. Peng, H. Deng, Z. Yang, and S. Xu, “Frequency noise of distributed Bragg reflector single-frequency fiber laser,” Opt. Express 25(11), 12601–12610 (2017).
[Crossref]

X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24(17), 18907–18916 (2016).
[Crossref] [PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
[Crossref]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
[Crossref]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Li, G.

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[Crossref]

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Y. Wu, J. Li, C. Zhao, Y. Zhao, F. Zhang, and Z. Chen, “Coherent optical OFDM scheme with inter-carrier interference self-cancellation and common phase error compensation,” Chin. Opt. Lett. 8(7), 634–638 (2010).
[Crossref]

Li, Z. G.

Lin, W.

Lin, Z.

Liu, B. Y.

Liu, T.

Liu, Z.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Liu, Z. S.

Ludlow, A. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Luo, B.

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ma, L.-S.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Ma, P.

Ma, Y.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
[Crossref] [PubMed]

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Mo, S.

X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24(17), 18907–18916 (2016).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Oates, C. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Peng, M.

Peng, W.-R.

Peng, X.

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Qian, Q.

Qiu, J.

Ran, Y.

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Santarelli, G.

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schilt, S.

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Seimetz, M.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conference (OFC) (2008), pp. 1–3.
[Crossref]

Shen, S.

Sherman, J. A.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Shieh, W.

Si, L.

Stéphan, G. M.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Su, R.

Tam, T. T.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Tang, Y.

Tao, R.

Têtu, M.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Thomann, P.

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wang, X.

Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, “560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 54(24), 7258–7263 (2015).
[Crossref] [PubMed]

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Wang, Z. J.

Wei, X.

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wu, S. H.

Wu, T.

Wu, Y.

Wu, Z.

Xiao, H.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Xiao, Y.

Xu, S.

Q. Zhao, Y. Zhang, W. Lin, Z. Wu, C. Li, C. Yang, Y. Zhang, Z. Feng, M. Peng, H. Deng, Z. Yang, and S. Xu, “Frequency noise of distributed Bragg reflector single-frequency fiber laser,” Opt. Express 25(11), 12601–12610 (2017).
[Crossref]

X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24(17), 18907–18916 (2016).
[Crossref] [PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
[Crossref]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
[Crossref]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Xu, S. H.

Xu, X.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Yang, C.

Q. Zhao, Y. Zhang, W. Lin, Z. Wu, C. Li, C. Yang, Y. Zhang, Z. Feng, M. Peng, H. Deng, Z. Yang, and S. Xu, “Frequency noise of distributed Bragg reflector single-frequency fiber laser,” Opt. Express 25(11), 12601–12610 (2017).
[Crossref]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24(17), 18907–18916 (2016).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
[Crossref]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
[Crossref]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, Q.

Yang, T.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, Z.

Q. Zhao, Y. Zhang, W. Lin, Z. Wu, C. Li, C. Yang, Y. Zhang, Z. Feng, M. Peng, H. Deng, Z. Yang, and S. Xu, “Frequency noise of distributed Bragg reflector single-frequency fiber laser,” Opt. Express 25(11), 12601–12610 (2017).
[Crossref]

X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24(17), 18907–18916 (2016).
[Crossref] [PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
[Crossref]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
[Crossref]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Yang, Z. M.

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Zhan, Y.

Zhang, F.

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhang, Y.

Zhao, C.

Zhao, Q.

Zhao, Y.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Y. Wu, J. Li, C. Zhao, Y. Zhao, F. Zhang, and Z. Chen, “Coherent optical OFDM scheme with inter-carrier interference self-cancellation and common phase error compensation,” Chin. Opt. Lett. 8(7), 634–638 (2010).
[Crossref]

Zhou, K.

Zhou, P.

Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, “560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 54(24), 7258–7263 (2015).
[Crossref] [PubMed]

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Zhu, J.

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (1)

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550 nm,” Appl. Phys. Express 8(8), 082703 (2015).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photonics J. (1)

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. Li, S. Xu, X. Huang, Z. Feng, C. Yang, K. Zhou, J. Gan, and Z. Yang, “High-speed frequency modulated low-noise single-frequency fiber laser,” IEEE Photonics Technol. Lett. 28(15), 1692–1695 (2016).
[Crossref]

X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photonics Technol. Lett. 23(14), 980–982 (2011).
[Crossref]

J. Lightwave Technol. (2)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
[Crossref]

Nat. Photonics (3)

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

S. W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37(18), 3861–3863 (2012).
[Crossref] [PubMed]

T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

Phys. Rev. A (1)

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Other (1)

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conference (OFC) (2008), pp. 1–3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the linewidth controllable fiber laser.
Fig. 2
Fig. 2 (a) The power spectra of WGN signals with different cutoff frequencies fc = 4 kHz, 10 kHz, 15 kHz, 20 kHz with constant noise amplitude An = 500mVpp. (b) The self-heterodyne power spectra of the noise-injecting fiber laser with different cutoff frequencies fc and their Voigt fitting curves, comparing with that of the initial laser and the laser with optical feedback. The inset is the detailed self-heterodyne spectra of the initial laser and the laser with optical feedback along with Lorentz fitting curves.
Fig. 3
Fig. 3 (a) The signal power spectra with different WGN signal amplitudes of An = 100, 200, 300, 400 and 500 mVpp with a constant cutoff frequency fc of 10 kHz. (b) Measured self-heterodyne spectra of the noise-injecting fiber laser and their Voigt fitting curves, comparing with the initial laser and the laser with optical feedback.
Fig. 4
Fig. 4 Measured linewidth results of the noise-injecting fiber laser with different WGN signal amplitudes of An and different cutoff frequencies fc of the WGN signals.
Fig. 5
Fig. 5 (a) LCR versus WGN signal amplitude An under different cutoff frequencies fc of 2, 6, 10, 15, 20 kHz. (b) LCR versus WGN signal cutoff frequency fc under different WGN signal amplitudes An of 100, 200, 300, 400, 500 mVpp.
Fig. 6
Fig. 6 (a) Measured optical spectra of the noise-injecting fiber laser with linewidth of 353 kHz along with the initial fiber laser and the fiber laser with optical feedback. (b) Measured RIN of the fiber laser before the optical feedback, after the optical feedback, and with linewidth of 353 kHz, while the theoretical shot noise limit is also shown for comparison. The inset is measured single-longitudinal-mode character of the noise-injecting fiber laser with linewidth of 353 kHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S n (f)={ h f f c 0 f> f c .
Γ(t)= E 0 2 e i2π v 0 τ e 2 0 S n (f) sin 2 (πfτ) f 2 df
S E (v)=2 e i2πvτ Γ(τ)dτ.
FWHM=h [8In(2) f c /h] 1/2 [ 1+ ( 8In2 π 2 f c h ) 2 ] 1/4 .

Metrics