Abstract

Wavelength selective filters represent one of the key elements for photonic integrated circuits (PIC) and many of their applications in linear and non-linear optics. In devices optimised for single polarisation operation, cross-polarisation scattering can significantly limit the achievable filter rejection. An on-chip filter consisting of elements to filter both TE and TM polarisations is demonstrated, based on a cascaded ring resonator geometry, which exhibits a high total optical rejection of over 60 dB. Monolithic integration of a cascaded ring filter with a four-wave mixing micro-ring device is also experimentally demonstrated with a FWM efficiency of −22dB and pump filter extinction of 62dB.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer

Seok-Hwan Jeong, Daisuke Shimura, Takasi Simoyama, Miyoshi Seki, Nobuyuki Yokoyama, Minoru Ohtsuka, Keiji Koshino, Tsuyoshi Horikawa, Yu Tanaka, and Ken Morito
Opt. Express 21(25) 30163-30174 (2013)

Ultra-high order ring resonator system with sharp transmission peaks

S. H. Tao, S. C. Mao, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong
Opt. Express 18(2) 393-400 (2010)

Penalty-free transmission in a silicon coupled resonator optical waveguide over the full C-band

Carlo Ferrari, Antonio Canciamilla, Francesco Morichetti, Marc Sorel, and Andrea Melloni
Opt. Lett. 36(19) 3948-3950 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  3. L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
    [Crossref]
  4. G.T. Reed and A.P. Knights, Silicon Photonics: an Introduction, (John Wiley & Sons, 2004).
    [Crossref]
  5. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
    [Crossref]
  6. C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26, 58–66 (2006).
    [Crossref]
  7. A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010).
    [Crossref] [PubMed]
  8. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15, 14467–14475 (2007).
    [Crossref] [PubMed]
  9. V. P. Heuring, “Bit-serial architecture for optical computing D = AC + BC,” Appl. Opt. 31, 3213–3224 (1992).
    [Crossref] [PubMed]
  10. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref] [PubMed]
  11. J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
    [Crossref]
  12. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
    [Crossref]
  13. A. Politi, J. Matthews, M. G. Thompson, and J. L. OâǍŹBrien, “Integrated Quantum Photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
    [Crossref]
  14. P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” IEEE J. Lightwave Technol. 32, 897–907 (2014).
    [Crossref]
  15. S. Ristic, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” IEEE J. Lightwave Technol. 28, 526–538 (2010).
    [Crossref]
  16. A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.
  17. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
    [Crossref]
  18. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  19. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).
  20. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
    [Crossref]
  21. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, a Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18, 23784–23789 (2010).
    [Crossref] [PubMed]
  22. X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).
  23. X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029 (2013).
    [Crossref] [PubMed]
  24. T. Liow, M. Yu, and G. Lo, “Silicon High-Order Coupled-Microring-Based Optical Interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
    [Crossref]
  25. J. R. Ong, R. Kumar, and S. Mookherjea, “Silicon microring-based wavelength converter with integrated pump and signal suppression,” Opt. Lett. 39, 4439–4441 (2014).
    [Crossref] [PubMed]
  26. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-High-Contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
    [Crossref]
  27. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
    [Crossref]
  28. D. Hofstetter and R. L. Thornton, “Theory of loss measurements of Fabry Perot resonators by Fourier analysis of the transmission spectra,” Opt. Lett. 22, 1831–1833 (1997).
    [Crossref]
  29. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
    [Crossref] [PubMed]
  30. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
    [Crossref] [PubMed]
  31. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37, 4814–4816 (2012).
    [Crossref] [PubMed]
  32. P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, and P. Bassi, “Tunable silicon photonics directional coupler driven by a transverse temperature gradient,” Opt. Lett. 38, 863–865 (2013).
    [Crossref] [PubMed]
  33. A. C. Turner, M. A Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
    [Crossref] [PubMed]
  34. M. J. Strain, C. Lacava, L. Merrigi, I. Cristiani, and M. Sorel, “Tunable Q-factor silicon micro-ring resonators for ultra-low power parametric processes,” Opt. Lett. 40, 1274–1277 (2014).
    [Crossref]

2016 (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

2015 (1)

2014 (4)

M. J. Strain, C. Lacava, L. Merrigi, I. Cristiani, and M. Sorel, “Tunable Q-factor silicon micro-ring resonators for ultra-low power parametric processes,” Opt. Lett. 40, 1274–1277 (2014).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Silicon microring-based wavelength converter with integrated pump and signal suppression,” Opt. Lett. 39, 4439–4441 (2014).
[Crossref] [PubMed]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” IEEE J. Lightwave Technol. 32, 897–907 (2014).
[Crossref]

2013 (4)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-High-Contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, and P. Bassi, “Tunable silicon photonics directional coupler driven by a transverse temperature gradient,” Opt. Lett. 38, 863–865 (2013).
[Crossref] [PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. OâǍŹBrien, “Integrated Quantum Photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26, 58–66 (2006).
[Crossref]

2005 (1)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
[Crossref] [PubMed]

2003 (1)

J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

2000 (1)

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[Crossref]

1997 (1)

1992 (1)

Agarwal, a

Aitchison, J. S.

Alam, M. Z.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Asghari, M.

Azzini, S.

Baehr-jones, T.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Baets, R.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Bajoni, D.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Banwell, T.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Bartolozzi, I.

Bassi, P.

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” IEEE J. Lightwave Technol. 32, 897–907 (2014).
[Crossref]

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, and P. Bassi, “Tunable silicon photonics directional coupler driven by a transverse temperature gradient,” Opt. Lett. 38, 863–865 (2013).
[Crossref] [PubMed]

Beckx, S.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Bergman, K.

Biberman, A.

Bienstman, P.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Branning, D.

J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
[Crossref]

Caspani, L.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Chen, L.

Chrostowski, L.

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).

Chu, S. T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Claes, T.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

Cristiani, I.

De Koninck, Y.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

De Vos, K.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Dong, P.

Dumon, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Englund, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Feng, D.

Feng, N.-N.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
[Crossref]

Flueckiger, J.

Foster, M. A

Gaeta, A. L.

Galland, C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Galli, M.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Girones, J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

Grassani, D.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Grist, S.

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).

Gunn, C.

C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26, 58–66 (2006).
[Crossref]

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Guo-Liang, L.

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Harris, N. C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Heuring, V. P.

Hochberg, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Hofstetter, D.

Huang, A.

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Huang, Y.

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Jaeger, N. A. F.

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Khan, M. H.

Kimerling, L. C.

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[Crossref]

Knights, A.P.

G.T. Reed and A.P. Knights, Silicon Photonics: an Introduction, (John Wiley & Sons, 2004).
[Crossref]

Kues, M.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Kumar, R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Silicon microring-based wavelength converter with integrated pump and signal suppression,” Opt. Lett. 39, 4439–4441 (2014).
[Crossref] [PubMed]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-High-Contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Lacava, C.

Lee, D. C.

Liang, H.

Liow, T.

T. Liow, M. Yu, and G. Lo, “Silicon High-Order Coupled-Microring-Based Optical Interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

Lipson, M.

Liscidini, M.

Little, B. E.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Lo, G.

T. Liow, M. Yu, and G. Lo, “Silicon High-Order Coupled-Microring-Based Optical Interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

Luff, B. J.

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Manipatruni, S.

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
[Crossref]

Matthews, J.

A. Politi, J. Matthews, M. G. Thompson, and J. L. OâǍŹBrien, “Integrated Quantum Photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Melloni, A.

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” IEEE J. Lightwave Technol. 32, 897–907 (2014).
[Crossref]

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, and P. Bassi, “Tunable silicon photonics directional coupler driven by a transverse temperature gradient,” Opt. Lett. 38, 863–865 (2013).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
[Crossref]

Menendez, R.

Merrigi, L.

Mirsaidi, S.

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Mojahedi, M.

Mookherjea, S.

Morandotti, R.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Morichetti, F.

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” IEEE J. Lightwave Technol. 32, 897–907 (2014).
[Crossref]

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, and P. Bassi, “Tunable silicon photonics directional coupler driven by a transverse temperature gradient,” Opt. Lett. 38, 863–865 (2013).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
[Crossref]

Moss, D. J.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Narasimha, A.

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

OâAZBrien, J. L.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. OâǍŹBrien, “Integrated Quantum Photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Ong, J. R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Silicon microring-based wavelength converter with integrated pump and signal suppression,” Opt. Lett. 39, 4439–4441 (2014).
[Crossref] [PubMed]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-High-Contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Ophir, N.

Orlandi, P.

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” IEEE J. Lightwave Technol. 32, 897–907 (2014).
[Crossref]

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, and P. Bassi, “Tunable silicon photonics directional coupler driven by a transverse temperature gradient,” Opt. Lett. 38, 863–865 (2013).
[Crossref] [PubMed]

Paloczi, G.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Pant, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Pinguet, T.

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Politi, A.

A. Politi, J. Matthews, M. G. Thompson, and J. L. OâǍŹBrien, “Integrated Quantum Photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Poon, J.

Popelka, S.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

Pryde, G. J.

J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Qi, M.

Qian, W.

Ralph, T. C.

J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Reed, G.T.

G.T. Reed and A.P. Knights, Silicon Photonics: an Introduction, (John Wiley & Sons, 2004).
[Crossref]

Reimer, C.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Ristic, S.

S. Ristic, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” IEEE J. Lightwave Technol. 28, 526–538 (2010).
[Crossref]

Roztocki, P.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Samarelli, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
[Crossref] [PubMed]

Schacht, E.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Scheuer, J.

Shen, H.

Shi, W.

X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Simbula, A.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Sipe, J. E.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Sorel, M.

Strain, M. J.

Sun, X.

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Taillaert, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. OâǍŹBrien, “Integrated Quantum Photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Thornton, R. L.

Toliver, P.

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
[Crossref]

Turner, A. C.

Van Campenhout, J.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Van Thourhout, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Wagner, S. J.

Wang, X.

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).

Wetzel, B.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

White, A. G.

J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Wiaux, V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Woodward, T. K.

Xiao, S.

Yariv, A.

Yi, L.

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Yu, M.

T. Liow, M. Yu, and G. Lo, “Silicon High-Order Coupled-Microring-Based Optical Interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

Yun, H.

X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[Crossref]

IEEE J. Lightwave Technol. (3)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” IEEE J. Lightwave Technol. 32, 897–907 (2014).
[Crossref]

S. Ristic, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” IEEE J. Lightwave Technol. 28, 526–538 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Politi, J. Matthews, M. G. Thompson, and J. L. OâǍŹBrien, “Integrated Quantum Photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE Micro (1)

C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26, 58–66 (2006).
[Crossref]

IEEE Photon. J. (1)

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Liow, M. Yu, and G. Lo, “Silicon High-Order Coupled-Microring-Based Optical Interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-High-Contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Nat. Commun. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. OâǍŹBrien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Nature (2)

J. L. OâǍŹBrien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (7)

A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15, 14467–14475 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

A. C. Turner, M. A Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
[Crossref] [PubMed]

J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
[Crossref] [PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029 (2013).
[Crossref] [PubMed]

P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, a Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18, 23784–23789 (2010).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Phys. Rev. Lett. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 33902 (2010).
[Crossref]

Phys. Rev. X (1)

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Science (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 6278 (2016).
[Crossref]

Other (3)

G.T. Reed and A.P. Knights, Silicon Photonics: an Introduction, (John Wiley & Sons, 2004).
[Crossref]

X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” IEEE Photonics Conf. (Arlington, VA) paper ThZ1 (2011).

A. Huang, C. Gunn, L. Guo-Liang, L. Yi, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µ m SOI CMOS,” in Proceedings of the Solid-State Circuits Conference 2006, pp. 922–929.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 SEM image of a single all pass ring resonator.
Fig. 2
Fig. 2 Schematics of third order (a) CROW and (b) Cascaded ring filter geometries.
Fig. 3
Fig. 3 Simulated TE mode spectra of (a) CROW and (b) cascaded ring filters, calculated for the through and drop port outputs.
Fig. 4
Fig. 4 (a) Comparison of simulated linear transmission between ideal TE and TM injection for a three ring cascade device. (b) Simulated transmission spectra of a three ring cascade filter for both polarisations, including 20dB input polarisation extinction ratio.
Fig. 5
Fig. 5 Mode cross section for TE (left) and TM (right) polarised field in a 220 × 500 nm SOI waveguide.
Fig. 6
Fig. 6 Measured waveguide loss as a function of the input wavelength for a TM injection in a single waveguide with NiCr cross sectional area of 50 × 900 nm.
Fig. 7
Fig. 7 Drop 3 port transmission measurements of a cascade device for (a) TE and (b) TM, dominant injection modes (ER 20dB)
Fig. 8
Fig. 8 A schematic of the monolithically integrated four-wave mixing source with cascade ring filter.
Fig. 9
Fig. 9 Experimental setup used for non-linear measurements on the monolithic device.
Fig. 10
Fig. 10 (a) Four wave mixing signals measured at the filter through port. T1 shows the FWM at the through port with the source ring off resonance with the filter. T2 shows the through port with the source ring on resonance with the filter. (b) Four wave mixing signals measured at the filter Drop 3 port, D3, with the source ring on resonance with the filter.
Fig. 11
Fig. 11 (a) Substrate light scattering captured by the output lensed fibre as a function of the displacement from the output filter’s waveguide. (b) Calculated modal overlap between waveguide and fibre modes as a function of lateral displacement.

Metrics