Abstract

We use a coherent fiber bundle to demonstrate the endoscopic absorption imaging of quantum gases. We show that the fiber bundle introduces spurious noise in the picture mainly due to the strong core-to-core coupling. By direct comparison with free-space pictures, we observe that there is a maximum column density that can be reliably measured using our fiber bundle, and we derive a simple criterion to estimate it. We demonstrate that taking care of not exceeding such maximum, we can retrieve exact quantitative information about the atomic system, making this technique appealing for systems requiring isolation form the environment.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative characterization of endoscopic imaging fibers

Harry A. C. Wood, Kerrianne Harrington, James M. Stone, Tim A. Birks, and Jonathan C. Knight
Opt. Express 25(3) 1985-1992 (2017)

Fiber bundle shifting endomicroscopy for high-resolution imaging

Khushi Vyas, Michael Hughes, Bruno Gil Rosa, and Guang-Zhong Yang
Biomed. Opt. Express 9(10) 4649-4664 (2018)

Characterization of optical fiber imaging bundles for swept-source optical coherence tomography

Helen D. Ford and Ralph P. Tatam
Appl. Opt. 50(5) 627-640 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
    [Crossref]
  2. M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, “High resolution magnetic vector-field imaging with cold atomic ensembles,” Appl. Phys. Lett. 98, 074101 (2011).
    [Crossref]
  3. I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
    [Crossref]
  4. T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
    [Crossref] [PubMed]
  5. I. Bloch, J. Dalibard, and S. Nascimbéne, “Quantum simulations with ultracold quantum gases,” Nature Physics 8(4), 267–276 (2012).
    [Crossref]
  6. C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
    [Crossref]
  7. S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
    [Crossref] [PubMed]
  8. K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
    [Crossref]
  9. E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
    [Crossref]
  10. Y. Kawaguchi, H. Saito, and M. Ueda, “Can Spinor Dipolar Effects Be Observed in Bose-Einstein Condensates?” Phys. Rev. Lett. 98(11), 110406 (2007).
    [Crossref] [PubMed]
  11. M. Lu, S. H. Youn, and B. L. Lev, “Trapping Ultracold Dysprosium: A Highly Magnetic Gas for Dipolar Physics,” Phys. Rev. Lett. 104(6), 063001 (2010).
    [Crossref] [PubMed]
  12. A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
    [Crossref] [PubMed]
  13. E. A. Donley, E. Hodby, L. Hollberg, and J. Kitching, “Demonstration of high-performance compact magnetic shields for chip-scale atomic devices,” Review of Scientific Instruments 78(8), 083102 (2007).
    [Crossref] [PubMed]
  14. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 23(25), 1708–1710 (2000).
    [Crossref]
  15. H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
    [Crossref] [PubMed]
  16. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
    [Crossref]
  17. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565–567 (1993).
    [Crossref] [PubMed]
  18. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803–1805 (2005).
    [Crossref] [PubMed]
  19. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29, 2521–2523 (2004).
    [Crossref] [PubMed]
  20. K.-B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, “Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo,” Opt. Express 11, 3171–3181 (2003).
    [Crossref] [PubMed]
  21. W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” Proceedings of the International School of Physics âĂİEnrico FermiâĂİ (M. Inguscio, S. Stringari, and C. E. Wiemaneds., IOS Press, 1999) and arXiv:cond-mat/9904034 (1999).
  22. J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Applied Physics B 106(3), 635–643 (2012).
    [Crossref]
  23. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598 (2008).
    [Crossref] [PubMed]
  24. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47(25), 4560–4568 (2008).
    [Crossref] [PubMed]
  25. The correct fitting function for a BEC is a Thomas-Fermi profile. We have verified that within our errorbars, using a Gaussian profile does not introduce any appreciable systematic error in the determination of the parameters here discussed.
  26. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71(3), 463–512 (1999).
    [Crossref]
  27. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Advances in Atomic Molecular, and Optical Physics 42, 95–170 (2000).
    [Crossref]

2015 (2)

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

2014 (2)

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

2013 (2)

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

2012 (2)

I. Bloch, J. Dalibard, and S. Nascimbéne, “Quantum simulations with ultracold quantum gases,” Nature Physics 8(4), 267–276 (2012).
[Crossref]

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Applied Physics B 106(3), 635–643 (2012).
[Crossref]

2011 (1)

M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, “High resolution magnetic vector-field imaging with cold atomic ensembles,” Appl. Phys. Lett. 98, 074101 (2011).
[Crossref]

2010 (1)

M. Lu, S. H. Youn, and B. L. Lev, “Trapping Ultracold Dysprosium: A Highly Magnetic Gas for Dipolar Physics,” Phys. Rev. Lett. 104(6), 063001 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (4)

E. A. Donley, E. Hodby, L. Hollberg, and J. Kitching, “Demonstration of high-performance compact magnetic shields for chip-scale atomic devices,” Review of Scientific Instruments 78(8), 083102 (2007).
[Crossref] [PubMed]

H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
[Crossref] [PubMed]

T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Y. Kawaguchi, H. Saito, and M. Ueda, “Can Spinor Dipolar Effects Be Observed in Bose-Einstein Condensates?” Phys. Rev. Lett. 98(11), 110406 (2007).
[Crossref] [PubMed]

2005 (2)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803–1805 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2000 (2)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Advances in Atomic Molecular, and Optical Physics 42, 95–170 (2000).
[Crossref]

A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 23(25), 1708–1710 (2000).
[Crossref]

1999 (1)

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71(3), 463–512 (1999).
[Crossref]

1993 (1)

Aikawa, K.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Asenbaum, P.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Aziz, D.

Baier, S.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Beloy, K.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Bernon, S.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Bloch, I.

I. Bloch, J. Dalibard, and S. Nascimbéne, “Quantum simulations with ultracold quantum gases,” Nature Physics 8(4), 267–276 (2012).
[Crossref]

Bongs, K.

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

Bothner, D.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Brenner, M.

Brune, M.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Cano, D.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Chatard, P.

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Chen, X.

Chen, Z.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

Christophe, V.

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

Dalfovo, F.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71(3), 463–512 (1999).
[Crossref]

Dalibard, J.

I. Bloch, J. Dalibard, and S. Nascimbéne, “Quantum simulations with ultracold quantum gases,” Nature Physics 8(4), 267–276 (2012).
[Crossref]

de Graeve, C. M.

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Descour, M. R.

Dickerson, S. M.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Donley, E. A.

E. A. Donley, E. Hodby, L. Hollberg, and J. Kitching, “Demonstration of high-performance compact magnetic shields for chip-scale atomic devices,” Review of Scientific Instruments 78(8), 083102 (2007).
[Crossref] [PubMed]

Donnelly, C. A.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Dubost, B.

M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, “High resolution magnetic vector-field imaging with cold atomic ensembles,” Appl. Phys. Lett. 98, 074101 (2011).
[Crossref]

Dulieu, O.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Durfee, D. S.

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” Proceedings of the International School of Physics âĂİEnrico FermiâĂİ (M. Inguscio, S. Stringari, and C. E. Wiemaneds., IOS Press, 1999) and arXiv:cond-mat/9904034 (1999).

Emmert, A.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Feldman, A.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Ferlaino, F.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

Follen, M.

Fortagh, J.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Frisch, A.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Giorgini, S.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71(3), 463–512 (1999).
[Crossref]

Gmitro, A. F.

Göbel, W.

Grimm, R.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Advances in Atomic Molecular, and Optical Physics 42, 95–170 (2000).
[Crossref]

Grosjean, O.

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Guo, S.

Han, J.-H.

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Applied Physics B 106(3), 635–643 (2012).
[Crossref]

Hanssen, L. M.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Haroche, S.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Hattermann, H.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Helmchen, F.

Hinkley, N.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Hodby, E.

E. A. Donley, E. Hodby, L. Hollberg, and J. Kitching, “Demonstration of high-performance compact magnetic shields for chip-scale atomic devices,” Review of Scientific Instruments 78(8), 083102 (2007).
[Crossref] [PubMed]

Hogan, J. M.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Hollberg, L.

E. A. Donley, E. Hodby, L. Hollberg, and J. Kitching, “Demonstration of high-performance compact magnetic shields for chip-scale atomic devices,” Review of Scientific Instruments 78(8), 083102 (2007).
[Crossref] [PubMed]

Jessen, F.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

Kang, J. U.

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Applied Physics B 106(3), 635–643 (2012).
[Crossref]

Kano, A.

Kasevich, M. A.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Kawaguchi, Y.

Y. Kawaguchi, H. Saito, and M. Ueda, “Can Spinor Dipolar Effects Be Observed in Bose-Einstein Condensates?” Phys. Rev. Lett. 98(11), 110406 (2007).
[Crossref] [PubMed]

Kemmler, M.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Kerr, J. N. D.

Ketterle, W.

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” Proceedings of the International School of Physics âĂİEnrico FermiâĂİ (M. Inguscio, S. Stringari, and C. E. Wiemaneds., IOS Press, 1999) and arXiv:cond-mat/9904034 (1999).

Kirkpatrick, N. D.

Kitching, J.

E. A. Donley, E. Hodby, L. Hollberg, and J. Kitching, “Demonstration of high-performance compact magnetic shields for chip-scale atomic devices,” Review of Scientific Instruments 78(8), 083102 (2007).
[Crossref] [PubMed]

Kleiner, R.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Knufinke, M.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Koelle, D.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Kornack, T. W.

T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Koschorreck, M.

M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, “High resolution magnetic vector-field imaging with cold atomic ensembles,” Appl. Phys. Lett. 98, 074101 (2011).
[Crossref]

Kotochigova, S.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Kovachy, T.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Kronjaeger, J.

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

Laurent, P.

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Lee, D.

Lee, S.-K.

T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Lehman, J.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Lepers, M.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Lev, B. L.

M. Lu, S. H. Youn, and B. L. Lev, “Trapping Ultracold Dysprosium: A Highly Magnetic Gas for Dipolar Physics,” Phys. Rev. Lett. 104(6), 063001 (2010).
[Crossref] [PubMed]

Liang, C.

Lu, M.

M. Lu, S. H. Youn, and B. L. Lev, “Trapping Ultracold Dysprosium: A Highly Magnetic Gas for Dipolar Physics,” Phys. Rev. Lett. 104(6), 063001 (2010).
[Crossref] [PubMed]

Ludlow, A. D.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Lupascu, A.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Malpica, A.

Mark, M.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Mitchell, M. W.

M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, “High resolution magnetic vector-field imaging with cold atomic ensembles,” Appl. Phys. Lett. 98, 074101 (2011).
[Crossref]

Moric, I.

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Mukai, D.

Napolitano, M.

M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, “High resolution magnetic vector-field imaging with cold atomic ensembles,” Appl. Phys. Lett. 98, 074101 (2011).
[Crossref]

Nascimbéne, S.

I. Bloch, J. Dalibard, and S. Nascimbéne, “Quantum simulations with ultracold quantum gases,” Nature Physics 8(4), 267–276 (2012).
[Crossref]

Nimmerjahn, A.

Nirrengarten, T.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Nogues, G.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Oates, C. W.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Advances in Atomic Molecular, and Optical Physics 42, 95–170 (2000).
[Crossref]

Overstreet, C.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Petrov, A.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Phillips, N. B.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Pierce, M. C.

Pitaevskii, L. P.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71(3), 463–512 (1999).
[Crossref]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

Quéméner, G.

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Ra, H.

Raimond, J.-M.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Reichenbach, K. L.

Richards-Kortum, R.

Romalis, M. V.

T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Rouse, A. R.

A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 23(25), 1708–1710 (2000).
[Crossref]

Roux, C.

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Saito, H.

Y. Kawaguchi, H. Saito, and M. Ueda, “Can Spinor Dipolar Effects Be Observed in Bose-Einstein Condensates?” Phys. Rev. Lett. 98(11), 110406 (2007).
[Crossref] [PubMed]

Schioppo, M.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

Schult, M.

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

Sengstock, K.

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

Sherman, J. A.

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Shin, H.-J.

Smullin, S. J.

T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Solgaard, O.

Stamper-Kurn, D. M.

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” Proceedings of the International School of Physics âĂİEnrico FermiâĂİ (M. Inguscio, S. Stringari, and C. E. Wiemaneds., IOS Press, 1999) and arXiv:cond-mat/9904034 (1999).

Stringari, S.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71(3), 463–512 (1999).
[Crossref]

Sugarbaker, A.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Sung, K.-B.

Tanbakuchi, A.

Thomin, S.

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Udovich, J. A.

Ueda, M.

Y. Kawaguchi, H. Saito, and M. Ueda, “Can Spinor Dipolar Effects Be Observed in Bose-Einstein Condensates?” Phys. Rev. Lett. 98(11), 110406 (2007).
[Crossref] [PubMed]

Utzinger, U.

Vedmedenko, E. Y.

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Advances in Atomic Molecular, and Optical Physics 42, 95–170 (2000).
[Crossref]

Weiss, P.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Wiesendanger, R.

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

Xie, T.

Xu, C.

Youn, S. H.

M. Lu, S. H. Youn, and B. L. Lev, “Trapping Ultracold Dysprosium: A Highly Magnetic Gas for Dipolar Physics,” Phys. Rev. Lett. 104(6), 063001 (2010).
[Crossref] [PubMed]

Acta Astronautica (1)

I. Moric, P. Laurent, P. Chatard, C. M. de Graeve, S. Thomin, V. Christophe, and O. Grosjean, “Magnetic shielding of the cold atom space clock PHARAO,” Acta Astronautica 102, 287–294 (2014).
[Crossref]

Advances in Atomic Molecular, and Optical Physics (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Advances in Atomic Molecular, and Optical Physics 42, 95–170 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, “High resolution magnetic vector-field imaging with cold atomic ensembles,” Appl. Phys. Lett. 98, 074101 (2011).
[Crossref]

Applied Physics B (1)

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Applied Physics B 106(3), 635–643 (2012).
[Crossref]

Europhys. Lett. (1)

C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, and S. Haroche, “Bose-Einstein condensation on a superconducting atom chip,” Europhys. Lett. 81(5), 56004 (2008).
[Crossref]

Nature (1)

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-metre scale,” Nature 528, 530–533 (2015).
[Crossref] [PubMed]

Nature Communications (1)

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortagh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nature Communications 4, 2380 (2013).
[Crossref] [PubMed]

Nature Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 12(2), 941–950 (2005).
[Crossref]

Nature Physics (1)

I. Bloch, J. Dalibard, and S. Nascimbéne, “Quantum simulations with ultracold quantum gases,” Nature Physics 8(4), 267–276 (2012).
[Crossref]

New J. Phys. (1)

E. Y. Vedmedenko, M. Schult, J. Kronjaeger, R. Wiesendanger, K. Bongs, and K. Sengstock, “Collective magnetism in arrays of spinor Bose-Einstein condensates,” New J. Phys. 15(6), 063033 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (4)

K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates, and A. D. Ludlow, “Atomic Clock with 1 × 10E-8 Room-Temperature Blackbody Stark Uncertainty,” Phys. Rev. Lett. 113(26), 260801 (2014).
[Crossref]

Y. Kawaguchi, H. Saito, and M. Ueda, “Can Spinor Dipolar Effects Be Observed in Bose-Einstein Condensates?” Phys. Rev. Lett. 98(11), 110406 (2007).
[Crossref] [PubMed]

M. Lu, S. H. Youn, and B. L. Lev, “Trapping Ultracold Dysprosium: A Highly Magnetic Gas for Dipolar Physics,” Phys. Rev. Lett. 104(6), 063001 (2010).
[Crossref] [PubMed]

A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Kotochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, “Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms,” Phys. Rev. Lett. 115(20), 203201 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71(3), 463–512 (1999).
[Crossref]

Review of Scientific Instruments (1)

E. A. Donley, E. Hodby, L. Hollberg, and J. Kitching, “Demonstration of high-performance compact magnetic shields for chip-scale atomic devices,” Review of Scientific Instruments 78(8), 083102 (2007).
[Crossref] [PubMed]

Other (2)

The correct fitting function for a BEC is a Thomas-Fermi profile. We have verified that within our errorbars, using a Gaussian profile does not introduce any appreciable systematic error in the determination of the parameters here discussed.

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” Proceedings of the International School of Physics âĂİEnrico FermiâĂİ (M. Inguscio, S. Stringari, and C. E. Wiemaneds., IOS Press, 1999) and arXiv:cond-mat/9904034 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics (not in scale) of the optical setup used. The atomic cloud casts a shadow on the imaging beam that is magnified by a factor of 1.8 by a first telescope. A flipping mirror send the image of the shadow of the atomic cloud either on the CCD or on the fiber bundle setup. In this latter a 2:1 telescope images the focal plane on the input facet of the fiber bundle. A 1:2 telescope then images the output facet on the CCD camera.
Fig. 2
Fig. 2 Image of the output facet of the fiber bundle when injected with incoherent (a) and coherent light (b). c) and d) are the corresponding two-dimensional Fourier transforms. The color scale is in dB. While in a) it is possible to appreciate the hexagonal packing of the fiber bundle, in b) only a speckle pattern is visible. Equivalently, in c) clear peaks emerge from the spectrum while in d) no peaks are visible.
Fig. 3
Fig. 3 Peak column density measured using the fiber bundle Ω 0 b as a function of the peak column density measured in free space Ω 0 f for the same atomic sample. The dashed line is the curve Ω 0 b = Ω 0 f. The errorbars are one standard deviation statistical errors.
Fig. 4
Fig. 4 a) and b) Direct picture of the absorption profile of a Bose-Einstein condensate in free space ( I 1 f ) and through the fiber bundle ( I 1 b ) respectively. c) and d) the corresponding absorption pictures Ωf and Ωb. The colour scale is the same in c) and d). Each picture is 656×492 pixels.
Fig. 5
Fig. 5 a) Number of counts in the region of maximum absorption m as a function of the average number of counts in the background b, evaluated from the direct picture I 1 b. All the units are counts per pixel. The three data sets are described in the text. The solid lines are linear fits to the data using the procedure described in the text. The errorbars are one standard deviation statistical errors. b) Absolute value of the residuals of the linear fits reported in a) as a function of b. The dashed lines correspond to the errorbars in a).
Fig. 6
Fig. 6 The Bose-Einstein condensate transition. Upper row: integrated density profiles of our atomic sample across the BEC transition measured using the fiber bundle and in free space. From the right to the left: a thermal cloud, a partially condensed cloud and a pure BEC. Lower row: condensate fraction as a function of the temperature. The lines are the fit functions explained in the text.

Metrics