Abstract

Using near-field scanning microscopy, we demonstrate that a 15-µm zone plate fabricated in a 70-nm chromium film sputtered on a glass substrate and having a focal length and outermost zone's width equal to the incident wavelength λ = 532 nm, focuses a circularly polarized Gaussian beam into a circular subwavelength focal spot whose diameter at the full-width of half-maximum intensity is FWHM = 0.47λ. This value is in near-accurate agreement with the FDTD-aided numerical estimate of FWHM = 0.46λ. When focusing a Gaussian beam linearly polarized along the y-axis, an elliptic subwavelength focal spot is experimentally found to measure FWHMx = 0.42λ (estimated value FWHMx = 0.40λ) and FWHMy = 0.64λ. The subwavelength focal spots presented here are the tightest among all attained so far for homogeneously polarized beams by use of non-immersion amplitude zone plates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microlens-aided focusing of linearly and azimuthally polarized laser light

S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, D. Gibson, S. Song, L. O’Faolain, and V. V. Kotlyar
Opt. Express 24(26) 29800-29813 (2016)

Tight focus of light using micropolarizer and microlens

Sergey S. Stafeev, Liam O’Faolain, Victor V. Kotlyar, and Anton G. Nalimov
Appl. Opt. 54(14) 4388-4394 (2015)

Thin high numerical aperture metalens

V. V. Kotlyar, A. G. Nalimov, S. S. Stafeev, Changyu Hu, L. O’Faolain, M. V. Kotlyar, D. Gibson, and S. Song
Opt. Express 25(7) 8158-8167 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Fu and W. Zhou, “Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing,” J. Nanophotonics 3(1), 033504 (2009).
    [Crossref]
  2. Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
    [Crossref]
  3. R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102(1), 95–100 (2011).
    [Crossref]
  4. R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett. 95(19), 191113 (2009).
    [Crossref]
  5. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
    [Crossref]
  6. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
    [Crossref] [PubMed]
  7. S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
    [Crossref]
  8. T. Wang, X. Wang, C. Kuang, X. Hao, and X. Liu, “Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings,” Appl. Phys. Lett. 97(23), 231105 (2010).
    [Crossref]
  9. P. Venugopalan, Q. Zhang, X. Li, L. Kuipers, and M. Gu, “Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens,” Opt. Lett. 39(19), 5744–5747 (2014).
    [Crossref] [PubMed]
  10. K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and A. Y. G. Fuh, “Beyond-limit light focusing in the intermediate zone,” Opt. Lett. 36(23), 4497–4499 (2011).
    [Crossref] [PubMed]
  11. Y. Liu, H. Xu, F. Stief, N. Zhitenev, and M. Yu, “Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits,” Opt. Express 19(21), 20233–20243 (2011).
    [Crossref] [PubMed]
  12. W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
    [Crossref] [PubMed]
  13. D. Feng, “3D confinement of the focal spot of plasmonic Fresnel zone plate lens using gold bowtie nanoantenna,” J. Opt. Soc. Am. A 31(9), 2070–2074 (2014).
    [Crossref] [PubMed]
  14. H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
    [Crossref]
  15. M. Zhang, J. Du, H. Shi, S. Yin, L. Xia, B. Jia, M. Gu, and C. Du, “Three-dimensional nanoscale far-field Focusing of Radially Polarized Light by Scattering the SPPs with an Annular Groove,” Opt. Express 18(14), 14664–14670 (2010).
    [Crossref] [PubMed]
  16. J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
    [Crossref]
  17. R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
    [Crossref]
  18. E. S. Kozlova, V. V. Kotlyar, and A. G. Nalimov, “Comparative modeling of amplitude and phase zone plates,” Comput. Opt. 39(5), 687–693 (2015).
    [Crossref]
  19. W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
    [Crossref] [PubMed]
  20. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]

2017 (1)

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

2016 (1)

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

2015 (1)

E. S. Kozlova, V. V. Kotlyar, and A. G. Nalimov, “Comparative modeling of amplitude and phase zone plates,” Comput. Opt. 39(5), 687–693 (2015).
[Crossref]

2014 (4)

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

D. Feng, “3D confinement of the focal spot of plasmonic Fresnel zone plate lens using gold bowtie nanoantenna,” J. Opt. Soc. Am. A 31(9), 2070–2074 (2014).
[Crossref] [PubMed]

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

P. Venugopalan, Q. Zhang, X. Li, L. Kuipers, and M. Gu, “Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens,” Opt. Lett. 39(19), 5744–5747 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (3)

2010 (3)

2009 (3)

R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett. 95(19), 191113 (2009).
[Crossref]

Y. Fu and W. Zhou, “Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing,” J. Nanophotonics 3(1), 033504 (2009).
[Crossref]

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

2007 (1)

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

1998 (1)

Capasso, F.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Chen, K. R.

Chen, W. T.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Chu, W. H.

Chuang, C. H.

Chui, H. C.

Deng, Y.

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

Djurišic, A. B.

Du, C.

Du, C. L.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Du, J.

Elazar, J. M.

Fang, H. C.

Fang, Z.

Feng, D.

Fu, Y.

Y. Fu and W. Zhou, “Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing,” J. Nanophotonics 3(1), 033504 (2009).
[Crossref]

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Fuh, A. Y. G.

Gao, P.

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

Gu, M.

Hao, X.

T. Wang, X. Wang, C. Kuang, X. Hao, and X. Liu, “Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings,” Appl. Phys. Lett. 97(23), 231105 (2010).
[Crossref]

He, J.

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

Hong, M.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Huang, C. H.

Huang, S.

Hwung, H. H.

Ji, J.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Jia, B.

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Kotlyar, V. V.

E. S. Kozlova, V. V. Kotlyar, and A. G. Nalimov, “Comparative modeling of amplitude and phase zone plates,” Comput. Opt. 39(5), 687–693 (2015).
[Crossref]

S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
[Crossref]

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

Kovalev, A. A.

Kozlova, E. S.

E. S. Kozlova, V. V. Kotlyar, and A. G. Nalimov, “Comparative modeling of amplitude and phase zone plates,” Comput. Opt. 39(5), 687–693 (2015).
[Crossref]

Kuang, C.

T. Wang, X. Wang, C. Kuang, X. Hao, and X. Liu, “Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings,” Appl. Phys. Lett. 97(23), 231105 (2010).
[Crossref]

Kuipers, L.

Kumar, A.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102(1), 95–100 (2011).
[Crossref]

Li, X.

P. Venugopalan, Q. Zhang, X. Li, L. Kuipers, and M. Gu, “Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens,” Opt. Lett. 39(19), 5744–5747 (2014).
[Crossref] [PubMed]

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Li, X. F.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102(1), 95–100 (2011).
[Crossref]

R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett. 95(19), 191113 (2009).
[Crossref]

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Lin, C. Y.

Lin, F.

Liu, C. P.

Liu, X.

T. Wang, X. Wang, C. Kuang, X. Hao, and X. Liu, “Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings,” Appl. Phys. Lett. 97(23), 231105 (2010).
[Crossref]

Liu, Y.

Lo, Y. L.

Luo, X.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

Luo, X. G.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Majewski, M. L.

Meng, Y.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Mote, R. G.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102(1), 95–100 (2011).
[Crossref]

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett. 95(19), 191113 (2009).
[Crossref]

Nalimov, A. G.

E. S. Kozlova, V. V. Kotlyar, and A. G. Nalimov, “Comparative modeling of amplitude and phase zone plates,” Comput. Opt. 39(5), 687–693 (2015).
[Crossref]

O’Faolain, L.

Peng, R.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Rakic, A. D.

Sanjeev, V.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Shi, H.

Shi, Z.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Song, W.

Stafeev, S. S.

Stief, F.

Sun, L.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Venugopalan, P.

Wang, C.

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Wang, H.

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

Wang, J.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Wang, Q.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

Wang, T.

T. Wang, X. Wang, C. Kuang, X. Hao, and X. Liu, “Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings,” Appl. Phys. Lett. 97(23), 231105 (2010).
[Crossref]

Wang, X.

T. Wang, X. Wang, C. Kuang, X. Hao, and X. Liu, “Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings,” Appl. Phys. Lett. 97(23), 231105 (2010).
[Crossref]

Wu, X.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Xia, L.

Xu, H.

Yao, N.

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

Yin, S.

Yu, M.

Yu, S. F.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102(1), 95–100 (2011).
[Crossref]

R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett. 95(19), 191113 (2009).
[Crossref]

Zhang, M.

Zhang, Q.

Zhao, Z.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Zhitenev, N.

Zhou, W.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102(1), 95–100 (2011).
[Crossref]

Y. Fu and W. Zhou, “Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing,” J. Nanophotonics 3(1), 033504 (2009).
[Crossref]

R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett. 95(19), 191113 (2009).
[Crossref]

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Zhu, X.

Appl. Opt. (2)

Appl. Phys. B (1)

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102(1), 95–100 (2011).
[Crossref]

Appl. Phys. Lett. (3)

R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett. 95(19), 191113 (2009).
[Crossref]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

T. Wang, X. Wang, C. Kuang, X. Hao, and X. Liu, “Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings,” Appl. Phys. Lett. 97(23), 231105 (2010).
[Crossref]

Comput. Opt. (1)

E. S. Kozlova, V. V. Kotlyar, and A. G. Nalimov, “Comparative modeling of amplitude and phase zone plates,” Comput. Opt. 39(5), 687–693 (2015).
[Crossref]

J. Mod. Opt. (2)

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
[Crossref]

J. Nanophotonics (2)

H. Wang, Y. Deng, J. He, P. Gao, N. Yao, C. Wang, and X. Luo, “Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures,” J. Nanophotonics 8(1), 083079 (2014).
[Crossref]

Y. Fu and W. Zhou, “Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing,” J. Nanophotonics 3(1), 033504 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelength for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Plasmonics (2)

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Chromium ZP: surface relief and y-axis profile measured on an atomic force microscope.
Fig. 2
Fig. 2 Simulation results for the ZP in Fig. 1: the intensity profiles are shown along the Cartesian axes.
Fig. 3
Fig. 3 The intensity pattern produced by the transverse E-field components. Intensity profiles along the Cartesian coordinates are also shown.
Fig. 4
Fig. 4 Experimental optical setup: M1, М2 – rotational mirrors, P1- polarizer, λ/4- quarter waveplate, L1- focusing lens, C- probe, О1- microlens, S- spectrometer, and CCD- a CCD-camera.
Fig. 5
Fig. 5 The intensity profile of the focal spot measured using an SNOM Ntegra Spectra: (a) 2D intensity pattern and intensity profiles along the (b) y- an (c) x- axes. Crosses mark the experimental data and a solid line depicts the cubic-spline-aided interpolation.
Fig. 6
Fig. 6 The calculated 2D intensity of the focal spot
Fig. 7
Fig. 7 The intensity distribution of the focal spot measured using an SNOM Ntegra Spectra: (a) 2D intensity pattern and intensity profiles along the (b) y- an (c) x- axes. Crosses mark the experimental data and a solid line depicts the cubic-spline-aided interpolation.

Tables (3)

Tables Icon

Table 1 Parameters of the focal spot versus the relief height of a chromium ZP illuminated by a circularly polarized beam. The spot size was calculated in terms of half-maximum of the total intensity I = Ix + Iy + Iz.

Tables Icon

Table 2 Parameters of the focal spot versus the relief height of a chromium ZP illuminated by a circularly polarized beam. The spot size was calculated in terms of half-maximum of |Sz|.

Tables Icon

Table 3 Parameters of the focal spot versus the relief height of a chromium ZP illuminated by a beam linearly polarized along the y-axis. The spot size was calculated in terms of the half-maximum of I = Ix + Iy

Metrics