Abstract

Particle shape is crucial to the properties of light scattered by atmospheric aerosol particles. A method of fluorescence microscopy direct observation was introduced to determine the aspect ratio distribution of aerosol particles. The result is comparable with that of the electron microscopic analysis. The measured aspect ratio distribution has been successfully applied in modeling light scattering and further in simulation of polarization measurements of the sun/sky radiometer. These efforts are expected to improve shape retrieval from skylight polarization by using directly measured aspect ratio distribution.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size distribution of mineral aerosol: using light-scattering models in laser particle sizing

Ben Veihelmann, Martin Konert, and Wim J. van der Zande
Appl. Opt. 45(23) 6022-6029 (2006)

Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system

Zhengqiang Li, Kaitao Li, Li Li, Hua Xu, Yisong Xie, Yan Ma, Donghui Li, Philippe Goloub, Yinlin Yuan, and Xiaobing Zheng
Appl. Opt. 57(5) 1011-1018 (2018)

Simultaneous retrieval of aerosol refractive index and particle size distribution from ground-based measurements of direct and scattered solar radiation

Peter Romanov, Norman T. O’Neill, Alain Royer, and Bruce L. J. McArthur
Appl. Opt. 38(36) 7305-7320 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M. Wendisch and W. Von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28(5), 785–792 (1994).
    [Crossref]
  2. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102(D14), 16831–16847 (1997).
    [Crossref]
  3. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
    [Crossref]
  4. S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11(11), 5347–5363 (2011).
    [Crossref]
  5. Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).
  6. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
    [Crossref]
  7. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
    [Crossref]
  8. K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
    [Crossref]
  9. K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
    [Crossref]
  10. M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
    [Crossref]
  11. N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
    [Crossref]
  12. E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
    [Crossref]
  13. D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ. 60, 534–543 (2012).
    [Crossref]
  14. K. Okada, J. Heintzenberg, K. Kai, and Y. Qin, “Shape of atmospheric mineral particles collected in three Chinese arid‐regions,” Geophys. Res. Lett. 28(16), 3123–3126 (2001).
    [Crossref]
  15. K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
    [Crossref]
  16. K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
    [Crossref]
  17. K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
    [Crossref]
  18. T. Nousiainen, M. Kahnert, and H. Lindqvist, “Can particle shape information be retrieved from light-scattering observations using spheroidal model particles?” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2213–2225 (2011).
    [Crossref]
  19. A. E. Fonseca, M. E. Westgate, and R. T. Doyle, “Application of fluorescence microscopy and image analysis for quantifying dynamics of maize pollen shed,” Crop Sci. 42(6), 2201–2206 (2002).
    [Crossref]
  20. I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, “A new approach to automated pollen analysis,” Quat. Sci. Rev. 19(6), 537–546 (2000).
    [Crossref]
  21. T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
    [Crossref]
  22. H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
    [Crossref]
  23. M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
    [Crossref]
  24. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?” J. Opt. Soc. Am. A 19(3), 521–531 (2002).
    [Crossref] [PubMed]
  25. M. Wendisch and P. Yang, Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction (Wiley-VCH, 2012).
  26. T. Nousiainen and K. Vermeulen, “Comparison of measured single-scattering matrix of feldspar particles with T -matrix simulations using spheroids,” J. Quant. Spectrosc. Radiat. Transf. 79, 1031–1042 (2003).
    [Crossref]
  27. P. Koepke, J. Gasteiger, and M. Hess, “Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC,” Atmos. Chem. Phys. 15(10), 5947–5956 (2015).
    [Crossref]
  28. M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
    [Crossref]
  29. J. L. Deuze, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 41(6), 483–494 (1989).
    [Crossref]
  30. H. G. Horváth and D. Varjú, Polarized Light in Animal Vision (Springer, 2004).
  31. L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
    [Crossref]
  32. C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
    [Crossref]

2015 (3)

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

P. Koepke, J. Gasteiger, and M. Hess, “Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC,” Atmos. Chem. Phys. 15(10), 5947–5956 (2015).
[Crossref]

2014 (3)

L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
[Crossref]

H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

2013 (2)

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

2012 (2)

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ. 60, 534–543 (2012).
[Crossref]

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

2011 (3)

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

T. Nousiainen, M. Kahnert, and H. Lindqvist, “Can particle shape information be retrieved from light-scattering observations using spheroidal model particles?” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2213–2225 (2011).
[Crossref]

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11(11), 5347–5363 (2011).
[Crossref]

2009 (2)

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

2007 (2)

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

2006 (2)

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
[Crossref]

2003 (1)

T. Nousiainen and K. Vermeulen, “Comparison of measured single-scattering matrix of feldspar particles with T -matrix simulations using spheroids,” J. Quant. Spectrosc. Radiat. Transf. 79, 1031–1042 (2003).
[Crossref]

2002 (3)

A. E. Fonseca, M. E. Westgate, and R. T. Doyle, “Application of fluorescence microscopy and image analysis for quantifying dynamics of maize pollen shed,” Crop Sci. 42(6), 2201–2206 (2002).
[Crossref]

F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?” J. Opt. Soc. Am. A 19(3), 521–531 (2002).
[Crossref] [PubMed]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

2001 (1)

K. Okada, J. Heintzenberg, K. Kai, and Y. Qin, “Shape of atmospheric mineral particles collected in three Chinese arid‐regions,” Geophys. Res. Lett. 28(16), 3123–3126 (2001).
[Crossref]

2000 (1)

I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, “A new approach to automated pollen analysis,” Quat. Sci. Rev. 19(6), 537–546 (2000).
[Crossref]

1998 (2)

E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
[Crossref]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

1997 (1)

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102(D14), 16831–16847 (1997).
[Crossref]

1994 (1)

M. Wendisch and W. Von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28(5), 785–792 (1994).
[Crossref]

1989 (1)

J. L. Deuze, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 41(6), 483–494 (1989).
[Crossref]

Allan, J. D.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

Althausen, D.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Aptowicz, K. B.

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
[Crossref]

Benker, N.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Blarel, L.

L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
[Crossref]

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Bundke, U.

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Burke, A. M.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ. 60, 534–543 (2012).
[Crossref]

Chang, R. K.

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
[Crossref]

Chen, C.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Chen, X.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Cuevas, E.

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Deutscher, C.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Deuze, J. L.

J. L. Deuze, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 41(6), 483–494 (1989).
[Crossref]

Doyle, R. T.

A. E. Fonseca, M. E. Westgate, and R. T. Doyle, “Application of fluorescence microscopy and image analysis for quantifying dynamics of maize pollen shed,” Crop Sci. 42(6), 2201–2206 (2002).
[Crossref]

Dubovik, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

Duller, A. W. G.

I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, “A new approach to automated pollen analysis,” Quat. Sci. Rev. 19(6), 537–546 (2000).
[Crossref]

Duller, G. A. T.

I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, “A new approach to automated pollen analysis,” Quat. Sci. Rev. 19(6), 537–546 (2000).
[Crossref]

Ebert, M.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Eck, T. F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Emmel, C.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

Esselborn, M.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Fernandez, E.

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

Flagan, R. C.

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

Fonseca, A. E.

A. E. Fonseca, M. E. Westgate, and R. T. Doyle, “Application of fluorescence microscopy and image analysis for quantifying dynamics of maize pollen shed,” Crop Sci. 42(6), 2201–2206 (2002).
[Crossref]

Foot, V. E.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

France, I.

I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, “A new approach to automated pollen analysis,” Quat. Sci. Rev. 19(6), 537–546 (2000).
[Crossref]

Freudenthaler, V.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Gallagher, M.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

Gasteiger, J.

P. Koepke, J. Gasteiger, and M. Hess, “Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC,” Atmos. Chem. Phys. 15(10), 5947–5956 (2015).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Healy, D. A.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ. 60, 534–543 (2012).
[Crossref]

Heese, B.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Heintzenberg, J.

K. Okada, J. Heintzenberg, K. Kai, and Y. Qin, “Shape of atmospheric mineral particles collected in three Chinese arid‐regions,” Geophys. Res. Lett. 28(16), 3123–3126 (2001).
[Crossref]

Herman, M.

J. L. Deuze, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 41(6), 483–494 (1989).
[Crossref]

Hess, M.

P. Koepke, J. Gasteiger, and M. Hess, “Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC,” Atmos. Chem. Phys. 15(10), 5947–5956 (2015).
[Crossref]

Hill, S. C.

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
[Crossref]

Hirst, E.

E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
[Crossref]

Hofmann, H.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Holben, B. N.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

House, J. M.

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

Huffman, J. A.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Jackel, S.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Jaenicke, R.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Johnson, D. W.

E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
[Crossref]

Jokinen, O.

H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
[Crossref]

Kahn, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102(D14), 16831–16847 (1997).
[Crossref]

Kahnert, F. M.

Kahnert, M.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11(11), 5347–5363 (2011).
[Crossref]

T. Nousiainen, M. Kahnert, and H. Lindqvist, “Can particle shape information be retrieved from light-scattering observations using spheroidal model particles?” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2213–2225 (2011).
[Crossref]

Kai, K.

K. Okada, J. Heintzenberg, K. Kai, and Y. Qin, “Shape of atmospheric mineral particles collected in three Chinese arid‐regions,” Geophys. Res. Lett. 28(16), 3123–3126 (2001).
[Crossref]

Kanaya, Y.

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

Kandler, K.

H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
[Crossref]

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Kaufman, Y. J.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Kaye, P. H.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
[Crossref]

Knippertz, P.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Koepke, P.

P. Koepke, J. Gasteiger, and M. Hess, “Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC,” Atmos. Chem. Phys. 15(10), 5947–5956 (2015).
[Crossref]

Kupper, M.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

Lamb, H. F.

I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, “A new approach to automated pollen analysis,” Quat. Sci. Rev. 19(6), 537–546 (2000).
[Crossref]

Lapyonok, T.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Lecun, Y.

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

Leon, J.-F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

Li, D.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Li, K.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
[Crossref]

Li, L.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
[Crossref]

Li, W.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Li, Z.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
[Crossref]

Lieke, K.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Lindqvist, H.

H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

T. Nousiainen, M. Kahnert, and H. Lindqvist, “Can particle shape information be retrieved from light-scattering observations using spheroidal model particles?” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2213–2225 (2011).
[Crossref]

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11(11), 5347–5363 (2011).
[Crossref]

Martin, S. D.

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

Massling, A.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Merikallio, S.

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11(11), 5347–5363 (2011).
[Crossref]

Mishchenko, M. I.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102(D14), 16831–16847 (1997).
[Crossref]

Miyakawa, T.

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

Mullerebert, D.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

Munoz, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

Nakajima, T.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Nousiainen, T.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
[Crossref]

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11(11), 5347–5363 (2011).
[Crossref]

T. Nousiainen, M. Kahnert, and H. Lindqvist, “Can particle shape information be retrieved from light-scattering observations using spheroidal model particles?” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2213–2225 (2011).
[Crossref]

T. Nousiainen and K. Vermeulen, “Comparison of measured single-scattering matrix of feldspar particles with T -matrix simulations using spheroids,” J. Quant. Spectrosc. Radiat. Transf. 79, 1031–1042 (2003).
[Crossref]

O’Connor, D. J.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ. 60, 534–543 (2012).
[Crossref]

Okada, K.

K. Okada, J. Heintzenberg, K. Kai, and Y. Qin, “Shape of atmospheric mineral particles collected in three Chinese arid‐regions,” Geophys. Res. Lett. 28(16), 3123–3126 (2001).
[Crossref]

Ozawa, Y.

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

Pan, Y. L.

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
[Crossref]

Perona, P.

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

Petzold, A.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Pickering, M. A.

E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
[Crossref]

Pinnick, R. G.

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
[Crossref]

Pöhlker, C.

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Pöschl, U.

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Qin, Y.

K. Okada, J. Heintzenberg, K. Kai, and Y. Qin, “Shape of atmospheric mineral particles collected in three Chinese arid‐regions,” Geophys. Res. Lett. 28(16), 3123–3126 (2001).
[Crossref]

Ranzato, M.

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

Rasp, K.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Robinson, N. H.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

Rodriguez, S.

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Santer, R.

J. L. Deuze, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 41(6), 483–494 (1989).
[Crossref]

Saunders, S.

E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
[Crossref]

Scheuvens, D.

H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
[Crossref]

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

Schladitz, A.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Schutz, L.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Sinyuk, A.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

Slutsker, I.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Smirnov, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Sodeau, J. R.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ. 60, 534–543 (2012).
[Crossref]

Sorokin, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

Stamnes, J. J.

Stamnes, K.

Sugimoto, N.

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

Tabaru, M.

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

Takegawa, N.

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

Taketani, F.

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

Tanré, D.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Taylor, P. E.

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

Tesche, M.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Toledano, C.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102(D14), 16831–16847 (1997).
[Crossref]

van der Zande, W. J.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

Veihelmann, B.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

Vermeulen, K.

T. Nousiainen and K. Vermeulen, “Comparison of measured single-scattering matrix of feldspar particles with T -matrix simulations using spheroids,” J. Quant. Spectrosc. Radiat. Transf. 79, 1031–1042 (2003).
[Crossref]

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Volten, H.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

Von Hoyningen-Huene, W.

M. Wendisch and W. Von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28(5), 785–792 (1994).
[Crossref]

Weinbruch, S.

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Weinzierl, B.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Wendisch, M.

L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
[Crossref]

M. Wendisch and W. Von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28(5), 785–792 (1994).
[Crossref]

West, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102(D14), 16831–16847 (1997).
[Crossref]

Westgate, M. E.

A. E. Fonseca, M. E. Westgate, and R. T. Doyle, “Application of fluorescence microscopy and image analysis for quantifying dynamics of maize pollen shed,” Crop Sci. 42(6), 2201–2206 (2002).
[Crossref]

Wiedensohler, A.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Wiegner, M.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Xie, Y.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Xu, H.

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Yang, P.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

Zorn, S.

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

Atmos. Chem. Phys. (3)

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11(11), 5347–5363 (2011).
[Crossref]

H. Lindqvist, O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen, “Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes,” Atmos. Chem. Phys. 14(1), 18451–18488 (2014).
[Crossref]

P. Koepke, J. Gasteiger, and M. Hess, “Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC,” Atmos. Chem. Phys. 15(10), 5947–5956 (2015).
[Crossref]

Atmos. Environ. (3)

M. Wendisch and W. Von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28(5), 785–792 (1994).
[Crossref]

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ. 60, 534–543 (2012).
[Crossref]

K. Kandler, N. Benker, U. Bundke, E. Cuevas, M. Ebert, P. Knippertz, S. Rodriguez, L. Schutz, and S. Weinbruch, “Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41(37), 8058–8074 (2007).
[Crossref]

Atmos. Meas. Tech. (2)

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosol data,” Atmos. Meas. Tech. 6(2), 337–347 (2013).
[Crossref]

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Crop Sci. (1)

A. E. Fonseca, M. E. Westgate, and R. T. Doyle, “Application of fluorescence microscopy and image analysis for quantifying dynamics of maize pollen shed,” Crop Sci. 42(6), 2201–2206 (2002).
[Crossref]

Geophys. Res. Lett. (2)

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29(10), 54 (2002).
[Crossref]

K. Okada, J. Heintzenberg, K. Kai, and Y. Qin, “Shape of atmospheric mineral particles collected in three Chinese arid‐regions,” Geophys. Res. Lett. 28(16), 3123–3126 (2001).
[Crossref]

J. Aerosol Sci. (1)

E. Hirst, P. H. Kaye, S. Saunders, D. W. Johnson, and M. A. Pickering, “Characterising atmospheric cloud particles using spatial light scattering,” J. Aerosol Sci. 29, S627–S628 (1998).
[Crossref]

J. Geophys. Res. Atmos. (4)

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102(D14), 16831–16847 (1997).
[Crossref]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. Atmos. 111(D11), D11208 (2006).
[Crossref]

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies,” J. Geophys. Res. Atmos. 111(D12), D12212 (2006).
[Crossref]

T. Miyakawa, Y. Kanaya, F. Taketani, M. Tabaru, N. Sugimoto, Y. Ozawa, and N. Takegawa, “Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles,” J. Geophys. Res. Atmos. 120(3), 1171–1185 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (6)

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

T. Nousiainen, M. Kahnert, and H. Lindqvist, “Can particle shape information be retrieved from light-scattering observations using spheroidal model particles?” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2213–2225 (2011).
[Crossref]

T. Nousiainen and K. Vermeulen, “Comparison of measured single-scattering matrix of feldspar particles with T -matrix simulations using spheroids,” J. Quant. Spectrosc. Radiat. Transf. 79, 1031–1042 (2003).
[Crossref]

L. Li, Z. Li, K. Li, L. Blarel, and M. Wendisch, “A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers,” J. Quant. Spectrosc. Radiat. Transf. 149, 334–346 (2014).
[Crossref]

J. L. Deuze, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 41(6), 483–494 (1989).
[Crossref]

K. B. Aptowicz, Y. L. Pan, S. D. Martin, E. Fernandez, R. K. Chang, and R. G. Pinnick, “Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 131, 13–23 (2013).
[Crossref]

Pattern Recognit. Lett. (1)

M. Ranzato, P. E. Taylor, J. M. House, R. C. Flagan, Y. Lecun, and P. Perona, “Automatic recognition of biological particles in microscopic images,” Pattern Recognit. Lett. 28(1), 31–39 (2007).
[Crossref]

Quat. Sci. Rev. (1)

I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, “A new approach to automated pollen analysis,” Quat. Sci. Rev. 19(6), 537–546 (2000).
[Crossref]

Remote Sens. Environ. (1)

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
[Crossref]

Tellus (1)

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus 61(1), 180–194 (2009).
[Crossref]

Tellus B Chem. Phys. Meterol. (2)

K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 32–50 (2009).
[Crossref]

K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Kupper, D. Mullerebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schutz, and S. Weinbruch, “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus B Chem. Phys. Meterol. 63(4), 475–496 (2011).
[Crossref]

Yaogan Xuebao (1)

Z. Li, D. Li, K. Li, H. Xu, X. Chen, C. Chen, Y. Xie, L. Li, L. Li, and W. Li, “Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements,” Yaogan Xuebao 19(3), 495–519 (2015).

Other (2)

H. G. Horváth and D. Varjú, Polarized Light in Animal Vision (Springer, 2004).

M. Wendisch and P. Yang, Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction (Wiley-VCH, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sampling and observation. (a) the Airmetrics Minivol Tactial Air Sampler, (b) 47 mm pure Teflon filter, (c) the Olympus IX71 inverted fluorescence microscope with oil- immersed 100x/1.4 objective and Andor 897 EMCCD.
Fig. 2
Fig. 2 Images of aerosol samples on the Teflon filter illuminated by white light (a) and illuminated by blue laser then exhibited green fluorescence (b), as well as extraction of particle shape based on the fluorescence image (c). Red box: image with coarse particles; blue box: image dominated by fine particles; yellow rings: outer edges of particles automatically extracted from the images after processing.
Fig. 3
Fig. 3 Result of the measured aspect ratio distribution of aerosol particles (black squares) and the fitted curve (solid line) of this distribution (a), as well as distributions from literature for China (i.e., Okada et al., 2001) [14], OPAC 4.0 mineral aerosols with r > 500 nm [27], and distribution for dust used in AERONET retrieval (i.e., Dubovik et al., 2006) [7] (b).
Fig. 4
Fig. 4 Elements of the scattering matrix simulated with the measured aspect ratio distribution (solid line), sphere (dash line), and distribution of dust (dotted line) used in AERONET retrieval [7]. The particle size distribution and the complex refractive index used in simulations were retrieved from the CE318-DP sky radiance measurements at Beijing-RADI at 07:07 UTC on December 4, 2014. Wavelength λ = 440 nm. The equal presence of prolate and oblate spheroids with the same aspect ratios was still assumed for dust aspect ratio distribution as adopted in the retrieval algorithm [7], while only prolate spheroids were considered for the measured aspect ratio distribution.
Fig. 5
Fig. 5 Stokes parameters I and Q of skylight simulated with the aspect ratio distribution measured at Beijing-RADI (black solid line) as well as the corresponding parameters observed by the CE318-DP (grey dot dash line) in the solar principal plane geometry [31]. I and Q are normalized by the extraterrestrial solar irradiance. The particle size distribution and the complex refractive index for simulation were same as in Fig. 4. Wavelength λ = 440 nm.

Tables (1)

Tables Icon

Table 1 The median aspect radio measured at Beijing-RADI, China as well as values in literature

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P(ε)= 2 1 f 1 (ε) + 1 f 2 (ε) ,
f 1 (ε)=1.00561× 10 6 exp(11.86251ε) ,
f 2 (ε)=9.60801exp(-3.70901ε) .

Metrics