Abstract

The spectral resolution requirements for in situ remote sensing reflectanceRRS measurements aiming at supporting satellite ocean color validation and System Vicarious Calibration (SVC) were investigated. The study, conducted using sample hyperspectral RRS from different water types, focused on the visible spectral bands of the ocean land color imager (OLCI) and of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite sensors. Allowing for a ±0.5% maximum difference between in situ and satellite derived RRS solely due to the spectral band characteristics of the in situ radiometer, a spectral resolution of 1 nm for SVC of PACE is needed in oligotrophic waters. Requirements decrease to 3 nm for SVC of OLCI. In the case of validation activities, which exhibit less stringent uncertainty requirements with respect to SVC, a maximum difference of ±1% between in situ and satellite derived data indicates the need for a spectral resolution of 3 nm for both OLCI and PACE in oligotrophic waters. Conversely, spectral resolutions of 6 nm for PACE and 9 nm for OLCI appear to satisfy validation activities in optically complex waters.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Out-of-band effects of satellite ocean color sensors

Menghua Wang, Puneeta Naik, and SeungHyun Son
Appl. Opt. 55(9) 2312-2323 (2016)

Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors

Zhongping Lee, Shaoling Shang, Chuanmin Hu, and Giuseppe Zibordi
Appl. Opt. 53(15) 3301-3310 (2014)

References

  • View by:
  • |
  • |
  • |

  1. World Meteorological Organization (WMO), The Global Observing System for Climate: Implementation needs. Report GCOS – 200 (2016) (available at http://unfccc.int/files/science/workstreams/systematic_observation/application/pdf/gcos_ip_10oct2016.pdf ).
  2. H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22(1), 103–126 (1987).
    [Crossref]
  3. G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
    [Crossref]
  4. F. Mélin and G. Sclep, “Band shifting for ocean color multi-spectral reflectance data,” Opt. Express 23(3), 2262–2279 (2015).
    [Crossref] [PubMed]
  5. M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
    [Crossref]
  6. Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
    [Crossref] [PubMed]
  7. B. C. Johnson, S. Flora, S. Brown, D. Clark, M. Yarbrough, and K. Voss, “Spectral resolution requirements for vicarious calibration of ocean color satellites”. Presented at the Ocean Color Research Team Meeting, Seattle (2007), available at http://oceancolor.gsfc.nasa.gov/cms/DOCS/ScienceTeam/OCRT_Apr2007/Posters/ .
  8. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).
  9. S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, K. Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” in SPIE Conference Proceedings Remote Sensing, pp. 67441M–67441M. International Society for Optics and Photonics (2007).
    [Crossref]
  10. G. Zibordi, J.-F. Berthon, F. Mélin, and D. D’Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115(8), 2104–2115 (2011).
    [Crossref]
  11. A. Tonizzo, M. Twardowski, S. McLean, K. Voss, M. Lewis, and C. Trees, “C. and Trees, “Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering,” Appl. Opt. 56(1), 130–146 (2017).
    [Crossref]
  12. M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
    [Crossref]
  13. C. Del Castillo, Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) Mission science definition team report (2012), available at https://pace.oceansciences.org/docs/pace_sdt_report_final.pdf .
  14. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).
    [Crossref] [PubMed]
  15. S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47(12), 2035–2045 (2008).
    [Crossref] [PubMed]
  16. G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
    [Crossref]

2017 (1)

2015 (2)

F. Mélin and G. Sclep, “Band shifting for ocean color multi-spectral reflectance data,” Opt. Express 23(3), 2262–2279 (2015).
[Crossref] [PubMed]

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

2014 (1)

2012 (1)

M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
[Crossref]

2011 (1)

G. Zibordi, J.-F. Berthon, F. Mélin, and D. D’Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115(8), 2104–2115 (2011).
[Crossref]

2009 (1)

G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

2008 (1)

2007 (1)

1997 (2)

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).

1987 (1)

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22(1), 103–126 (1987).
[Crossref]

Antoine, D.

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47(12), 2035–2045 (2008).
[Crossref] [PubMed]

Bailey, S. W.

Berger, M.

M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
[Crossref]

Berthon, J.-F.

G. Zibordi, J.-F. Berthon, F. Mélin, and D. D’Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115(8), 2104–2115 (2011).
[Crossref]

G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

Broenkow, W.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).

Clark, D. K.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).

D’Alimonte, D.

G. Zibordi, J.-F. Berthon, F. Mélin, and D. D’Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115(8), 2104–2115 (2011).
[Crossref]

G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

De Munck, J. C.

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

Del Castillo, C.

C. Del Castillo, Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) Mission science definition team report (2012), available at https://pace.oceansciences.org/docs/pace_sdt_report_final.pdf .

Franz, B. A.

Ge, Y.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).

Gordon, H. R.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22(1), 103–126 (1987).
[Crossref]

Hanssen, R. F.

M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
[Crossref]

Hooker, S. B.

Hu, C.

Huot, J.-P.

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

Johannessen, J. A.

M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
[Crossref]

Johnson, B. C.

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

Kaitala, S.

G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

Kwiatkowska, E.

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

Lee, Z.

Levelt, P. F.

M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
[Crossref]

Lewis, M.

McClain, C. R.

McLean, S.

Mélin, F.

F. Mélin and G. Sclep, “Band shifting for ocean color multi-spectral reflectance data,” Opt. Express 23(3), 2262–2279 (2015).
[Crossref] [PubMed]

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

G. Zibordi, J.-F. Berthon, F. Mélin, and D. D’Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115(8), 2104–2115 (2011).
[Crossref]

G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

Moreno, J.

M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
[Crossref]

Sclep, G.

Shang, S.

Shimwell, S. J.

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

Tonizzo, A.

Trees, C.

Twardowski, M.

Voss, K.

Voss, K. J.

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).

Wang, M.

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

Werdell, P. J.

Wernand, M. R.

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

Zibordi, G.

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[Crossref] [PubMed]

G. Zibordi, J.-F. Berthon, F. Mélin, and D. D’Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115(8), 2104–2115 (2011).
[Crossref]

G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

Appl. Opt. (4)

Int. J. Remote Sens. (1)

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

J. Geophys. Res. (1)

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102(17), 209–217 (1997).

Opt. Express (1)

Remote Sens. Environ. (5)

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22(1), 103–126 (1987).
[Crossref]

G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

G. Zibordi, J.-F. Berthon, F. Mélin, and D. D’Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115(8), 2104–2115 (2011).
[Crossref]

M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system science,” Remote Sens. Environ. 120, 84–90 (2012).
[Crossref]

G. Zibordi, F. Mélin, K. J. Voss, B. C. Johnson, B. A. Franz, E. Kwiatkowska, J.-P. Huot, M. Wang, and D. Antoine, “System vicarious calibration for ocean color climate change applications: Requirements for in situ data,” Remote Sens. Environ. 159, 361–369 (2015).
[Crossref]

Other (4)

C. Del Castillo, Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) Mission science definition team report (2012), available at https://pace.oceansciences.org/docs/pace_sdt_report_final.pdf .

World Meteorological Organization (WMO), The Global Observing System for Climate: Implementation needs. Report GCOS – 200 (2016) (available at http://unfccc.int/files/science/workstreams/systematic_observation/application/pdf/gcos_ip_10oct2016.pdf ).

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, K. Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” in SPIE Conference Proceedings Remote Sensing, pp. 67441M–67441M. International Society for Optics and Photonics (2007).
[Crossref]

B. C. Johnson, S. Flora, S. Brown, D. Clark, M. Yarbrough, and K. Voss, “Spectral resolution requirements for vicarious calibration of ocean color satellites”. Presented at the Ocean Color Research Team Meeting, Seattle (2007), available at http://oceancolor.gsfc.nasa.gov/cms/DOCS/ScienceTeam/OCRT_Apr2007/Posters/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Sample R R S spectra used in this study. NP (a) and WM (b) refer to the North Pacific Gyre and the Western Mediterranean Sea oligotrophic waters, while WB (c) and NA (d) refer to the Western Black Sea and northern Adriatic optically complex waters. Insets in panels a-c display R R S with scales expanded in the 600-700 nm interval to better visualize spectral features.
Fig. 2
Fig. 2 Relative spectral response functions of the visible OLCI (a) and PACE-like (b) bands.
Fig. 3
Fig. 3 Flow diagram illustrating the hyperspectral matching scheme. The comparison of satellite-equivalent R R S s and satellite-exact R R S s values is indicated by ε. See text for a comprehensive description of variables and flow.
Fig. 4
Fig. 4 Percent differences ε between R R S s and R R S s determined for OLCI bands. Data in different panels refer to the NP (a), WM (b), WB (c) and NA (d) spectra, and are presented at the OLCI center-wavelengths for different bandwidths Δλ B and spectral sampling intervals Δλ C of the in situ hyperspectral sensor.
Fig. 5
Fig. 5 Percent differences ε between R R S s and R R S s determined for PACE-like bands. Data in different panels refer to NP (a), WM (b), WB (c) and NA (d) spectra, and are presented at the considered PACE-like center-wavelengths for different bandwidths Δλ B and spectral sampling intervals Δλ C of the in situ hyperspectral sensor.
Fig. 6
Fig. 6 Mean μ (a) and standard deviation σ (b) values of percent differences ε between R R S s and R R S s determined for PACE-like bands, and computed with 103 MOS spectra from 15 May to 28 August 2015. Data are presented at the considered PACE-like center-wavelengths for different bandwidths Δλ B and spectral sampling intervals Δλ C of the in situ hyperspectral sensor.
Fig. 7
Fig. 7 Original (grey line) and spectrally degraded NP R R S data (black line) determined with Δλ C = 3 nm and Δλ B = 9 nm (a), and percent differences ε between degraded and the original high resolution spectra (b).
Fig. 8
Fig. 8 Differences Δε between values of ε determined from R R S s and R R S s for the OLCI (a) or PACE-like (b) bands, with reduced resolution (i.e., Δλ B = 9 nm and Δλ C = 3 nm) and full resolution NP spectra.
Fig. 9
Fig. 9 Percent differences ε between L W s and L W s determined with NP spectra for OLCI (a) or PACE-like (b) bands. Data are presented at the considered OLCI or PACE-like center-wavelengths for different simulated bandwidths Δλ B and spectral sampling intervals Δλ C of the in situ hyperspectral sensor.
Fig. 10
Fig. 10 Original (grey line) and spectrally degraded NP L W data (black line) determined with Δλ C = 3 nm and Δλ B = 9 nm (a), and percent differences ε between degraded and the original high resolution spectra (b).
Fig. 11
Fig. 11 Differences Δε between values of ε determined from R R S s and R R S s at the PACE-like bands, with reduced and full resolution (i.e., with Δλ C = 1 nm and Δλ B = 1 nm) NP spectra. Specifically, data in the various panels refer to Δε for various spectral degradation defined assuming fixed bandwidths (i.e., Δλ B = 6 nm (a) and Δλ B = 3 nm (b)) and different spectral sampling intervals Δλ C .

Tables (2)

Tables Icon

Table 1 Bio-optical quantities(a) related to the R R S spectra used in this study: Chla and TSM indicate the concentration of chlorophyll-a and of total suspended matter, while a and bb indicate the absorption and backscattering coefficients at 490 nm of optically significant constituents, respectively.

Tables Icon

Table 2 Spectral resolutions ΔλB and sampling intervals ΔλC considered for the application of the hyperspectral matching scheme.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( k ) = l ( l ) S ( k , l ) l S ( k , l )
r ' ( l ) = k i i ( k i ) S i ( k i , l ) k i S i ( k i , l )
ϵ ( k ) = 100 [ ( k ) r ( k ) r ( k ) ]

Metrics