Abstract

The wavelength modulation spectroscopy (WMS) technique has been demonstrated as a powerful and indispensable tool for quantitative and real-time measurements on the combustion process of various industrial devices. However, the varying pressure occurred in the aero-engine combustor significantly affects the accuracy and efficiency of the WMS technique. To address this issue, this work reports a novel method named WMS pressure correction model, which can enable fast signal processing in the measurements at varying pressure. The method was first validated in a heated optical cell, and then applied to the pressure and temperature measurements in an aero-engine combustor. The results show that the new method can efficiently and accurately measure the pressure and temperature at the varying pressure conditions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson
Appl. Opt. 53(9) 1938-1946 (2014)

Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments

Gregory B. Rieker, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 48(29) 5546-5560 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
    [Crossref]
  2. R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energ. Combust. 44, 103–114 (2014).
    [Crossref]
  3. R. K. Hanson, “Applications of quantitative laser sensors to kinetics propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
    [Crossref]
  4. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
    [Crossref] [PubMed]
  5. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
    [Crossref]
  6. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 87(2-3), 407–416 (2007).
    [Crossref]
  7. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B 100(2), 417–425 (2010).
    [Crossref]
  8. K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable Diode-Laser Spectroscopy With Wavelength Modulation: A Calibration-Free Approach to the Recovery of Absolute Gas Absorption Line-shapes,” J. Lightwave Technol. 25(10), 3114–3125 (2007).
    [Crossref]
  9. W. Johnstone, A. J. McGettrick, K. Duffin, A. Cheung, and G. Stewart, “Tunable diode laser spectroscopy for industrial process applications: system characterization in conventional and new approaches,” IEEE Sens. J. 8(7), 1079–1088 (2008).
    [Crossref]
  10. A. J. McGettrick, W. Johnstone, R. Cunningham, and J. D. Black, “Tunable diode laser spectroscopy with wavelength modulation: calibration-free measurement of gas compositions at elevated temperatures and varying pressure,” J. Lightwave Technol. 27(15), 3150–3161 (2009).
    [Crossref]
  11. G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line-shapes using tunable diode laser spectroscopy with wavelength modulation—part I: theoretical analysis,” J. Lightwave Technol. 29(6), 811–821 (2011).
  12. J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line-shapes using tunable diode laser spectroscopy with wavelength modulation—part 2: experimental investigation,” J. Lightwave Technol. 29(7), 987–996 (2011).
    [Crossref]
  13. P. Zhimin, D. Yanjun, C. Lu, L. Xiaohang, and Z. Kangjie, “Calibration-free wavelength modulated TDLAS under high absorbance conditions,” Opt. Express 19(23), 23104–23110 (2011).
    [Crossref] [PubMed]
  14. P. Zhimin, D. Yanjun, C. Lu, and Y. Qiansuo, “Odd harmonics with wavelength modulation spectroscopy for recovering gas absorbance shape,” Opt. Express 20(11), 11976–11985 (2012).
    [Crossref] [PubMed]
  15. K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
    [Crossref]
  16. C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
    [Crossref] [PubMed]
  17. C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
    [Crossref]
  18. R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
    [Crossref]
  19. Z. Qu, R. Ghorbani, D. Valiev, and F. M. Schmidt, “Calibration-free scanned wavelength modulation spectroscopy-application to H2O and temperature sensing in flames,” Opt. Express 23(12), 16492–16499 (2015).
    [Crossref] [PubMed]
  20. Z. C. Qu and F. M. Schmidt, “In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy,” Appl. Phys. B 119(1), 45–53 (2015).
    [Crossref]
  21. X. Zhou, Diode-laser Absorption Sensors for Combustion Control (Academic, 2005), Chap. 2.
  22. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
    [Crossref]
  23. H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

2017 (1)

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

2015 (4)

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
[Crossref]

Z. C. Qu and F. M. Schmidt, “In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy,” Appl. Phys. B 119(1), 45–53 (2015).
[Crossref]

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Z. Qu, R. Ghorbani, D. Valiev, and F. M. Schmidt, “Calibration-free scanned wavelength modulation spectroscopy-application to H2O and temperature sensing in flames,” Opt. Express 23(12), 16492–16499 (2015).
[Crossref] [PubMed]

2014 (3)

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energ. Combust. 44, 103–114 (2014).
[Crossref]

2013 (1)

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

2012 (1)

2011 (5)

2010 (1)

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B 100(2), 417–425 (2010).
[Crossref]

2009 (2)

2008 (1)

W. Johnstone, A. J. McGettrick, K. Duffin, A. Cheung, and G. Stewart, “Tunable diode laser spectroscopy for industrial process applications: system characterization in conventional and new approaches,” IEEE Sens. J. 8(7), 1079–1088 (2008).
[Crossref]

2007 (2)

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 87(2-3), 407–416 (2007).
[Crossref]

K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable Diode-Laser Spectroscopy With Wavelength Modulation: A Calibration-Free Approach to the Recovery of Absolute Gas Absorption Line-shapes,” J. Lightwave Technol. 25(10), 3114–3125 (2007).
[Crossref]

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[Crossref]

Amann, M. C.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B 100(2), 417–425 (2010).
[Crossref]

Bain, J. R. P.

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Black, J. D.

Bolshov, M. A.

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Chao, X.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

Chen, J.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B 100(2), 417–425 (2010).
[Crossref]

Cheung, A.

W. Johnstone, A. J. McGettrick, K. Duffin, A. Cheung, and G. Stewart, “Tunable diode laser spectroscopy for industrial process applications: system characterization in conventional and new approaches,” IEEE Sens. J. 8(7), 1079–1088 (2008).
[Crossref]

Cunningham, R.

Davidson, D. F.

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energ. Combust. 44, 103–114 (2014).
[Crossref]

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Duffin, K.

Farooq, A.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 87(2-3), 407–416 (2007).
[Crossref]

Feng, H. Z.

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Ghorbani, R.

Goldenstein, C. S.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Hangauer, A.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B 100(2), 417–425 (2010).
[Crossref]

Hanson, R. K.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energ. Combust. 44, 103–114 (2014).
[Crossref]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 87(2-3), 407–416 (2007).
[Crossref]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[Crossref]

Jeffries, J. B.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 87(2-3), 407–416 (2007).
[Crossref]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[Crossref]

Johnstone, W.

Kangjie, Z.

Kuritsyn, Y. A.

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Lengden, M.

Li, H.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 87(2-3), 407–416 (2007).
[Crossref]

Li, M.

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

Liang, Y.

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

Liu, J. T. C.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[Crossref]

Lu, C.

Ma, Z.

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

McGettrick, A. J.

Moodie, D. G.

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Qiansuo, Y.

Qu, Z.

Qu, Z. C.

Z. C. Qu and F. M. Schmidt, “In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy,” Appl. Phys. B 119(1), 45–53 (2015).
[Crossref]

Rieker, G. B.

Romanovskii, Y. V.

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Ruxton, K.

Schmidt, F. M.

Z. Qu, R. Ghorbani, D. Valiev, and F. M. Schmidt, “Calibration-free scanned wavelength modulation spectroscopy-application to H2O and temperature sensing in flames,” Opt. Express 23(12), 16492–16499 (2015).
[Crossref] [PubMed]

Z. C. Qu and F. M. Schmidt, “In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy,” Appl. Phys. B 119(1), 45–53 (2015).
[Crossref]

Schultz, I. A.

Socha, J. G.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
[Crossref]

Spearrin, R. M.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

Stewart, G.

Strand, C. L.

Strzoda, R.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B 100(2), 417–425 (2010).
[Crossref]

Sun, K.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
[Crossref]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

Suo, J. Q.

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

Sur, R.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
[Crossref]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Valiev, D.

Xiaohang, L.

Yang, Y. G.

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

Yanjun, D.

Zhimin, P.

Advan. Aeronauti. Sci. Engi. (1)

H. Z. Feng, Z. Ma, Y. G. Yang, Y. Liang, M. Li, and J. Q. Suo, “Study on combustion characteristics of an aeroengine combustion chamber with kerosene into diesel,” Advan. Aeronauti. Sci. Engi. 8(1), 29–37 (2017).

Appl. Opt. (2)

Appl. Phys. B (6)

Z. C. Qu and F. M. Schmidt, “In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy,” Appl. Phys. B 119(1), 45–53 (2015).
[Crossref]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[Crossref]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 87(2-3), 407–416 (2007).
[Crossref]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B 100(2), 417–425 (2010).
[Crossref]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

Fuel (1)

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4and H2O in a high-pressure engineering-scale transport-reactor coal gasifies,” Fuel 150, 102–111 (2015).
[Crossref]

IEEE Sens. J. (1)

W. Johnstone, A. J. McGettrick, K. Duffin, A. Cheung, and G. Stewart, “Tunable diode laser spectroscopy for industrial process applications: system characterization in conventional and new approaches,” IEEE Sens. J. 8(7), 1079–1088 (2008).
[Crossref]

J. Lightwave Technol. (4)

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2011).
[Crossref]

Opt. Express (3)

Proc. Combust. Inst. (1)

R. K. Hanson, “Applications of quantitative laser sensors to kinetics propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
[Crossref]

Prog. Energ. Combust. (1)

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energ. Combust. 44, 103–114 (2014).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (1)

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Other (1)

X. Zhou, Diode-laser Absorption Sensors for Combustion Control (Academic, 2005), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Basic principles of the WMS-2f processes, the red waveform denotes the varying of laser wavelength versus time, the pink waveform denotes the varying of absorbed laser intensity versus time. Owing to the nonlinear transmission (similar to the line-shape), the absorbed laser intensity is nonlinear modulated when the laser wavelength tunes to near the center of absorption line.

Fig. 2
Fig. 2

Panel (a): the calculated line-shape in different temperatures. Panel (b): the calculated K profile in different temperatures. Panel (c): the height of K profile and the ratio of the two water lines as a function of temperature.

Fig. 3
Fig. 3

Panel (a): the calculated line-shape in different water concentrations. Panel (b): the calculated K profile in different water concentrations. Panel (c): the K height and the ratio of two water lines as a function of water fraction. a = 0.095 cm−1 for Line 6873.674 cm−1 and 0.125 cm−1 for Line 7450.932 cm−1.

Fig. 4
Fig. 4

Panel (a): the calculated line-shape in different pressures. Panel (b): the calculated K profile in different pressures. Panel (c): the K height and the ratio of two water lines as a function of pressure. T = 1500 K, X = 0.1, a = 0.095 cm−1 for Line 6873.674 cm−1 and 0.125 cm−1 for Line 7450.932 cm−1.

Fig. 5
Fig. 5

Panel (a): the varying of modulation index m for two water lines in different pressures. Panel (b): the varying of K height under optimal modulation index 2.2 in different pressures.

Fig. 6
Fig. 6

Panel (a): the K profile for water line 7450.932 cm−1 in different pressures. Panel (b): the FWHM of K profile and modulation index m as a function of pressure in different modulation amplitudes. Panel (c): the enlarged view of the dashed border in panel (b).

Fig. 7
Fig. 7

Panel (a): the FWHM of K profile as a function of pressure at different temperatures. Panel (b): the FWHM of K profile as a function of pressure at different water mole fractions. Water Line 7450.932 cm−1.

Fig. 8
Fig. 8

Flow chart of pressure correction model for the measurements of pressure, temperature and concentration based on WMS-2f technique at varying pressure conditions.

Fig. 9
Fig. 9

Schematic experimental setup for the validation of pressure correction model

Fig. 10
Fig. 10

The synchronous measured laser intensity and WMS-2f signal. Panel (a): the measured laser intensity in one cycle. Panel (b): the measured WMS-2f signal in one cycle.

Fig. 11
Fig. 11

Measured WMS-2f signal for two selected water lines at different pressures. Panel (a): measured WMS-2f signal for Line 6873.674 cm−1. Panel (b): measured WMS-2f signal for Line 7450.932 cm−1. Panel (c): normalized WMS-2f height versus pressure for Line 6873.674 cm−1. Panel (d): normalized WMS-2f height versus pressure for Line 7450.932 cm−1. The measured height of WMS-2f signal for the two lines is normalized by H(P = 1atm) and pressure P. The calculation value for the two lines is normalized by their value at P = 1 atm, respectively.

Fig. 13
Fig. 13

The temperature measurement errors of established TDLAS WMS-2f sensor. Panel (a): the measured errors versus temperature at atmospheric pressure. Panel (b): the measured errors over 1 atm to 12 atm for 773 K. Panel (c): the measured errors over 1 atm to 12 atm for 973 K. Panel (d): the measured errors over 1 atm to 12 atm for 1173 K.

Fig. 14
Fig. 14

Experimental setup for the measurements of aero-engine combustor based on time division multiplexing scheme.

Fig. 15
Fig. 15

The measured pressure and temperature based on the established WMS-2f sensor. Panel (a): the comparison of measured pressure between the pressure gauge and the WMS-2f sensor. Panel (b): the comparison of measured temperature between the traditional Two-line Method and the Pressure Correction Method.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H=GPXLI( ν )KS( T )
R 2f = H 1 H 2 = I( ν 1 ) I( ν 2 ) K 1 K 2 S 1 ( T ) S 2 ( T )
K i = 1 π π +π ϕ i ( ν i + a i cosθ )cos(2θ)dθ
S( T )=S( T ref ) Q( T ref ) Q( T ) exp[ hcE" k ( 1 T 1 T ref ) ][ 1exp( hcν/ kT ) 1exp( hcν/ k T ref ) ]
T= hc k ( E 2 " E 1 " ) ln R 2f +ln S 2 ( T ref ) S 1 ( T ref ) + hc k ( E 2 " E 1 " ) T ref +ln K 2 K 1 +ln I( ν 2 ) I( ν 1 )
P=f( w )
C= S 2 ( T ref ) K 2 S 1 ( T ref ) K 1 = H 2 ( P, T ref ) I c ( ν 1 ) H 1 ( P, T ref ) I c ( ν 2 )
T= hc k ( E 2 " E 1 " ) ln( C H 1 H 2 )+ hc k ( E 2 " E 1 " ) T ref +ln I( ν 2 ) I( ν 1 )
X= G c L c S( T ref ) I c ( ν ) X c GLS(T)H( P, T ref )I( ν ) H

Metrics