Abstract

Nanoparticle is a promising candidate for large scale fabrication of metamaterial. However, optical responses for metamaterial made of abound metal like Al can be thoroughly changed due to oxidization. Especially for nanoparticle whose aspect ratio is extremely high, oxidation usually occurs. So to understand how the responses shift in a nanoparticle system due to oxidization is essential for large scale application of metamaterial. In this paper, we have concluded and quantified two general principles describing this transition in a monolayer Al-Al2O3 nanoparticle-crystal, which can be used in a thermophotovoltaic system. Square pattern, in which the unit of changing crystal is a square cell made up of Al and Al2O3 particles, is firstly demonstrated. A double oscillators model has been proposed to understand the interference between different absorption modes and their coupling. Using near-field distribution, equivalent inductor-capacitor model and dispersion relationship of surface Plasmon polariton, we have distinguished the resonance modes, concluded the transition principles in a simple case. Then the two principles are applied in a larger cell to verify its university. After detailed demonstration of symmetric square pattern, models and principles are extrapolated to more complex non-symmetric systems. The basic understanding gained here will help the design of robust large-scale metamaterial.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  3. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(1), 1094–1123 (2014).
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
    [Crossref]
  5. B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).
  6. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(57), A1713–A1724 (2014).
    [Crossref] [PubMed]
  7. A. Didari and M. P. Mengüç, “Near- to far-field coherent thermal emission by surfaces coated by nanoparticles and the evaluation of effective medium theory,” Opt. Express 23(11), A547–A552 (2015).
    [Crossref] [PubMed]
  8. H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
    [Crossref]
  9. Y. B. Chen and C. C. Wu, “Unique scattering patterns and reduced reflectance from Bessel’s rough surfaces,” Opt. Mater. Express 5(5), 1016–1029 (2015).
    [Crossref]
  10. W. J. Wang, C. J. Fu, and W. C. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132(1), 36–42 (2014).
  11. H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
    [Crossref] [PubMed]
  12. N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
    [Crossref] [PubMed]
  13. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [Crossref] [PubMed]
  14. H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(1), 1475–1480 (2011).
    [Crossref]
  15. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(1), 4890–4898 (2014).
    [Crossref]
  16. Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [Crossref] [PubMed]
  17. Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light Focusing In Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions,” Adv. Mater. 25(1), 115–119 (2013).
    [Crossref] [PubMed]
  18. H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
    [Crossref] [PubMed]
  19. A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
    [Crossref] [PubMed]
  20. Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
    [Crossref] [PubMed]
  21. B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
    [Crossref]
  22. Z. X. Jia, Y. Shuai, S. D. Xu, and H. P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015).
    [Crossref] [PubMed]
  23. Z. X. Jia, Y. Shuai, Y. M. Guo, and H. P. Tan, “Nanoparticle-crystal towards an absorbing meta-coating,” Opt. Express 25(8), A375–A390 (2017).
    [Crossref] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids, (Academic University, 1998).
  25. Z. M. Zhang, Nano/microscaleheattransfer. (NewYork: McGraw-Hill Education, 2007).
  26. A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-GalleryModes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]

2017 (1)

2016 (1)

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

2015 (4)

2014 (6)

W. J. Wang, C. J. Fu, and W. C. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132(1), 36–42 (2014).

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(1), 1094–1123 (2014).

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(1), 4890–4898 (2014).
[Crossref]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(57), A1713–A1724 (2014).
[Crossref] [PubMed]

2013 (4)

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light Focusing In Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

2011 (2)

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(1), 1475–1480 (2011).
[Crossref]

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

2006 (1)

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-GalleryModes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

2005 (1)

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

2004 (1)

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
[Crossref]

Ayala-Orozco, C.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(1), 4890–4898 (2014).
[Crossref]

Boriskina, S. V.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light Focusing In Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

Castillo, J.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Chen, L.

Chen, Y. B.

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Didari, A.

Ding, W.

Duan, H. L.

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(1), 1475–1480 (2011).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
[Crossref]

Fang, Z.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Feng, R.

Fu, C. J.

W. J. Wang, C. J. Fu, and W. C. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132(1), 36–42 (2014).

García de Abajo, F. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
[Crossref]

Gong, J.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Guo, Y. M.

Halas, N. J.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

Hicks, E. C.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Hogan, N. J.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Hong, Y.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light Focusing In Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-GalleryModes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Jia, Z. X.

Jiang, L.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(1), 1094–1123 (2014).

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Lapine, M.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(1), 1094–1123 (2014).

Levin, C. S.

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
[Crossref]

Liu, L.

Liu, W.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Liu, X.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-GalleryModes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Meng, H.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Mengüç, M. P.

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(1), 4890–4898 (2014).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Neumann, O.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nordlander, P.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

O’Dea, K.

Ormonde, A. D.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pimpinelli, A.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(1), 4890–4898 (2014).
[Crossref]

Polman, A.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Pourmand, M.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light Focusing In Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

Qiu, J.

Qiu, X.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Reinhard, B. M.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light Focusing In Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(1), 4890–4898 (2014).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shadrivov, I. V.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(1), 1094–1123 (2014).

Shuai, Y.

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Tan, H. P.

Tan, W. C.

W. J. Wang, C. J. Fu, and W. C. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132(1), 36–42 (2014).

Tang, Z.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
[Crossref]

Urban, A. S.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, D.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Wang, H.

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

Wang, L.

Wang, L. P.

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Wang, W. J.

W. J. Wang, C. J. Fu, and W. C. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132(1), 36–42 (2014).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
[Crossref]

Wu, C. C.

Xu, S. D.

Xuan, Y. M.

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(1), 1475–1480 (2011).
[Crossref]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

ACS Nano (1)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light Focusing In Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-GalleryModes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Int. J. Heat Mass Transfer (2)

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

J. Am. Chem. Soc. (1)

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(1), 4890–4898 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

W. J. Wang, C. J. Fu, and W. C. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132(1), 36–42 (2014).

Langmuir (1)

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Nano Lett. (2)

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at A Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(1), 667–669 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Physica E (1)

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(1), 1475–1480 (2011).
[Crossref]

Rev. Mod. Phys. (1)

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(1), 1094–1123 (2014).

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids, (Academic University, 1998).

Z. M. Zhang, Nano/microscaleheattransfer. (NewYork: McGraw-Hill Education, 2007).

Supplementary Material (6)

NameDescription
» Visualization 1: MPG (758 KB)      Visualization of Figure. 3(a)
» Visualization 2: MPG (590 KB)      Visualization of Figure. 3(b)
» Visualization 3: MPG (1148 KB)      Visualization of Figure. 5(a)
» Visualization 4: MPG (928 KB)      Visualization of Figure. 5(b)
» Visualization 5: MPG (916 KB)      Visualization of Figure. 5(c)
» Visualization 6: MPG (928 KB)      Visualization of Figure. 5(d)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Illustration of symmetric and non-symmetric system. (b) Schematic of monolayer nanoparticle-crystal discussed. (c) Spectral absorptions obtained from FDTD results with different resolutions of meshes. (d) The spectral absorptivity for 5 different modes in pattern 4. (e) Illustrations of crossing sections in the crystal, taking mode 0 1 1 0 as example.

Fig. 2
Fig. 2

(a) Illustration of double oscillators model. (b) The analytical and numerical spectral absorption lines for the 4 modes.

Fig. 3
Fig. 3

Near-field light distributions of the mode 1 1 1 1 in the 1X section at (a) 1.04μm and visualized in Visualization 1 (b) 1.33μm and visualized in Visualization 2. The contour represents the M field intensity and the arrows indicate the electric vectors. Illustration of (c) Air-Al SPP, (d) MP.

Fig. 4
Fig. 4

Near-field light distributions in the mode 0 1 1 1 at (a) 1.02μm (b) 1.48μm for 1X section, (c) 1.02μm (d) 1.48μm for −1X section. The contour represents the M field intensity and the arrows indicate the electric vectors.

Fig. 5
Fig. 5

Near-field light distributions in the mode 0 1 1 0 in −1X section (a) at 0.82μm, illustrated in (b) as 4th Al2O3-Al SPP, and visualized in Visualization 3. (c) at 0.97μm, illustrated in (d) as FP, and visualized in Visualization 4. (e) at 1.18μm, illustrated in (f) as 3rd Al2O3-Al SPP, and visualized in Visualization 5. (g) at 1.40μm, illustrated in (h) as MP2, and visualized in Visualization 6.

Fig. 6
Fig. 6

Near-field light distributions in the mode 0 1 0 0 in 1X at (a) 0.82μm (c) 0.97μm (e) 1.18μm and (g) 1.40μm, in −1X section at (b) 0.82μm (d) 0.97μm (f) 1.18μm and (h) 1.40μm. The contour represents the M field intensity and the arrows indicate the electric vectors.

Fig. 7
Fig. 7

Energy level obtained from FDTD and analytical model for (a) MP and 1st order Air-Al SPP in mode 1 1 1 1 . (b) MP and 1st order Air-Al SPP in mode 0 1 1 1 . The analytical and numerical energy level in mode 0 1 1 0 and 0 1 0 0 , for (c) 3rd order Al2O3-Al SPP. (d) 4th order Al2O3-Al SPP. (e) MP2. (f) FP.

Fig. 8
Fig. 8

Absorption spectrum for pattern 9, when Al2O3 or Al particles have taken the dominance in number. The vertical scale is the normal absorptivity. Left column represents metallic particles have taken the dominance in number, right column refers to the modes where dielectric particles are greater in number.

Fig. 9
Fig. 9

Absorption spectrum for pattern 9, when Al2O3 or Al particles are evenly matched in number. The vertical scale is the normal absorptivity. The left column represents ratio of metallic/dielectric particles is 5/4, the right column represents the ratio is 5/4.

Fig. 10
Fig. 10

Near field distributions in a RMD=8/1 cell at (a) 1.04μm, (b) 1.40μm, in a RMD=5/4 cell at (c) 1.04μm, (d) 1.40μm, in a RMD=1/8 cell at (e) 1.04μm, (f) 1.40μm. The contour represents the M field intensity and the arrows indicate the electric vectors.

Fig. 11
Fig. 11

Absorption spectrum for (a) a symmetric with RMD=8/1and (b) an asymmetric cell with RMD=6/3as a function of polarization angle. Average monochromatic absorptivity in pattern 9 at (c) 1.04μm (d) 1.4μm. The horizontal error bars indicate the differences between maximum and minimum monochromatic absorptivity among different modes with a same oxidation ratio.

Fig. 12
Fig. 12

Absorption spectrum obtained from FDTD and model. (a) 9 particles in a symmetric square cell. (b) 15, (c) 24, (d) 33 particles in an asymmetric cell.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x .. 1 + γ 1 x . 1 + ω 1 2 x 1 + v 12 x 2 =a e iωt x .. 2 + γ 2 x . 2 + ω 2 2 x 2 + v 12 x 1 =0
c 2 ( ω 1 , ω 2 , v 12 )= v 12 ( ω 1 2 ω 2 +iγω)( ω 2 2 ω 2 +iγω) v 12 2 a
| k spp |= ω c 0 ε 1 ε 2 ε 1 + ε 2
k || =( k x,inc + 2πm P x ) x ^ +( k y,inc + 2πn P y ) y ^
| k || |=| k spp |
λ MP =2πc (2 C Gap + C Mutual )( L NP + L Sub + L Mutual )
ω 2 L Sub 2 C NP 2 L NP L Sub ( L Sub +4 L NP ) C NP + 2 ω 2 ( L Sub + L NP )=0
λ MP2 =2πc 2 L Sub C NP L NP L Sub +4 L NP ± L Sub 2 +8 L NP 2
c = v SPP-MP ( ω SPP 2 ω 2 +iγω)( ω MP 2 ω 2 +iγω) v 12 2 a

Metrics