Abstract

A tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling. Similarly, as for a bulk dual-junction tandem system on a silicon bottom cell, a bandgap of approximately 1.7 eV is optimum for the nanowire top cell. First, we consider a simplified system of bare, uncoated III-V nanowires on the silicon substrate and optimize the absorption in the nanowires. We find that an optimum absorption in 2000 nm long nanowires is reached for a dense array of approximately 15 nanowires per square micrometer. However, when we coat such an array with a conformal indium tin oxide (ITO) top contact layer, a substantial absorption loss occurs in the ITO. This ITO could absorb 37% of the low energy photons intended for the silicon subcell. By moving to a design with a 50 nm thick, planarized ITO top layer, we can reduce this ITO absorption to 5%. However, such a planarized design introduces additional reflection losses. We show that these reflection losses can be reduced with a 100 nm thick SiO2 anti-reflection coating on top of the ITO layer. When we at the same time include a Si3N4 layer with a thickness of 90 nm on the silicon surface between the nanowires, we can reduce the average reflection loss of the silicon cell from 17% to 4%. Finally, we show that different approximate models for the absorption in the silicon substrate can lead to a 15% variation in the estimated photocurrent density in the silicon subcell.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Review on photonic properties of nanowires for photovoltaics [Invited]

S. Mokkapati and C. Jagadish
Opt. Express 24(15) 17345-17358 (2016)

Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells

Xinhua Li, Tongfei Shi, Guangqiang Liu, Long Wen, BuKang Zhou, and Yuqi Wang
Opt. Express 23(19) 25316-25328 (2015)

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).
  2. S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
    [Crossref]
  3. G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
    [Crossref]
  4. M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
    [Crossref] [PubMed]
  5. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  6. I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
    [Crossref]
  7. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
    [Crossref] [PubMed]
  8. G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
    [Crossref] [PubMed]
  9. Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
    [Crossref] [PubMed]
  10. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
    [Crossref]
  11. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
    [Crossref] [PubMed]
  12. D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
    [Crossref] [PubMed]
  13. M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
    [Crossref] [PubMed]
  14. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
    [Crossref]
  15. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
    [Crossref]
  16. Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
    [Crossref] [PubMed]
  17. Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
    [Crossref] [PubMed]
  18. A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
    [Crossref]
  19. A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
    [Crossref]
  20. S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
    [Crossref]
  21. X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
    [Crossref] [PubMed]
  22. Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
    [Crossref] [PubMed]
  23. N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720–A1734 (2015).
    [Crossref] [PubMed]
  24. N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
    [Crossref]
  25. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
    [Crossref]
  26. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  27. C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
    [Crossref]
  28. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
    [Crossref]
  29. I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.
  31. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
    [Crossref]
  32. M. A. Green, “Solar cells: operating principles, technology, and system applications,” (1982).
  33. F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
    [Crossref]
  34. S. Divitt and L. Novotny, “Spatial coherence of sunlight and its implications for light management in photovoltaics,” Optica 2(2), 95–103 (2015).
    [Crossref]
  35. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
    [Crossref] [PubMed]
  36. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
    [Crossref] [PubMed]
  37. H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
    [Crossref] [PubMed]

2017 (1)

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

2016 (5)

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (4)

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

2013 (7)

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

2012 (3)

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

2011 (2)

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

2009 (2)

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

2004 (1)

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

2002 (1)

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

2001 (1)

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1980 (1)

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

1963 (1)

F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Abelès, F.

F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
[Crossref]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Åberg, I.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Allebé, C.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Anttu, N.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Arab, S.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

Asoli, D.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Badel, N.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Bakkers, E. P.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Ballif, C.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Barraud, L.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Benali, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Björk, M. T.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Bläsi, B.

Borg, M.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Breslin, C.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bruley, J.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bu, S.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Bucci, D.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Cao, Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cavalli, A.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Chauvin, N.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Chen, Y.

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

Chi, C.-Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cong, S.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cronin, S. B.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

Cui, Y.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Czaban, J. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

Dahlgren, A.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Dapkus, P. D.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Das Kanungo, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

De Vos, A.

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Descoeudres, A.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Despeisse, M.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Divitt, S.

Docherty, C. J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Drouard, E.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Dunlop, E. D.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Eisenlohr, J.

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Essig, S.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Faes, A.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Fave, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Foster, A. P.

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

Fujishima, D.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Fukui, T.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gao, L.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Gao, Q.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Geisz, J. F.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Gendry, M.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Gignac, L.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Gilboy, J. P.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Goldschmidt, J. C.

Gómez Rivas, J.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Gosele, U.

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

Goto, H.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Green, A.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

M. A. Green, “Solar cells: operating principles, technology, and system applications,” (1982).

Gueymard, C. A.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Hara, S.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Hashiguchi, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Hauser, H.

Haverkort, J. E.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

He, J. J.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

He, S.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Herz, L. M.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Hiruma, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Hishikawa, Y.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Ho-Baillie, A. W. Y.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Höhn, O.

Hu, Y.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

Huang, N.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Huffaker, D. L.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Hung, C. H.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Ichihashi, Y.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Jagadish, C.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Johnston, M. B.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Joyce, H. J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Kai, M.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Kaminski-Cachopo, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Kastner, G.

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

Kiefel, P.

LaPierre, R.

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

LaPierre, R. R.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

LaSalvia, V.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Leu, P. W.

Levi, D. H.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Levrat, J.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Li, M.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

Li, X.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
[Crossref] [PubMed]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Lin, Y.-T.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Liu, G.

Lloyd-Hughes, J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Mariani, G.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Martin, K. E.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Maruyama, E.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Masuko, K.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Matsubara, N.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Meyer, J.

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Michallon, J.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Mishima, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Moselund, K. E.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Motohisa, J.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Müller, C.

Myers, D.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Naseem, U.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Nosaki, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Novotny, L.

Okamoto, S.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Paiman, S.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Paviet-Salomon, B.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Peters, M.

Pistol, M. E.

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

Plissard, S. R.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Povinelli, M. L.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Ram-Mohan, L.

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Regreny, P.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Riel, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Rojo, P.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Samuelson, L.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Schmid, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Scofield, A. C.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Seyedi, M. A.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Shi, T.

Shigematsu, M.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Signorello, G.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Steiner, M. A.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Stradins, P.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Sundvall, C.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Svensson, K. E.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Taguchi, M.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Takahama, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Tan, H. H.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Thompson, D. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

Tomioka, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Trainor, M.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Tucher, N.

van Dam, D.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

van Hoof, N. J.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

van Veldhoven, P. J.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

van Veldhoven, R. P.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Verheijen, M. A.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Vescovi, G.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Vu, T. T.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Vurgaftman, I.

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wang, B.

Wang, J.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Wang, W.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Wang, Y.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
[Crossref] [PubMed]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Ward, S.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Warta, W.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Wen, L.

X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
[Crossref] [PubMed]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Werner, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Wilson, L. R.

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wong-Leung, J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Xu, H.

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

Yamaguchi, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Yamanishi, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Yao, M.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Yong, C.-K.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Yoshimura, N.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Young, D. L.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Zeng, X.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Zhang, D.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Zhao, Y.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Zhou, B.

Zhou, C.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

ACS Nano (1)

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Appl. Phys. Express (1)

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Appl. Phys. Lett. (1)

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Energy Procedia (1)

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

IEEE J. Photovolt. (2)

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

IEEE,” J. Photovolt. (1)

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

J. Appl. Phys. (4)

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Nano Lett. (6)

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Philos. Mag. (1)

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

Phys. Rev. B (1)

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Phys. Status Solidi (1)

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

Prog. Opt. (1)

F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
[Crossref]

Prog. Photovaltaics (1)

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Sci. Rep. (1)

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Sol. Energy (1)

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.

M. A. Green, “Solar cells: operating principles, technology, and system applications,” (1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of a nanowire array on a silicon substrate. (a) Bare nanowire array. (b) Nanowire array with conformal ITO layer. (c) Nanowire array with planarized ITO layer together with a top and a bottom ARC.
Fig. 2
Fig. 2 Optical response of (a) Structure 2 and (b) Structure 3 as for the optimized system marked by (*) in Table 1 and Table 2, respectively. The ITO absorption in (a) corresponds to a photocurrent density of 9.4 mA/cm2 through Eq. (2).
Fig. 3
Fig. 3 (a) Absorption in the nanowires and in the ITO, reflection loss, and transmission into the silicon substrate for varying ITO thickness in Structure 3 marked by (*) in Table 2. Note that these results are translated into equivalent photocurrent density values through Eq. (1) and Eq. (2). (b) ITO absorptance AITO(λ) for the varying ITO thicknesses considered in (a).
Fig. 4
Fig. 4 (a) Reflection of Structure 1 and 3 with optimized diameter and pitch (as marked by (*) in Table 1 and Table 2, respectively). (b) Reflection of Structure 3 with varying configuration of the ARC layers. (c) Absorption in the nanowire array and the silicon substrate in Structure 3 of (a). We show here results for three different assumptions for the absorption in the silicon.
Fig. 5
Fig. 5 (a) Reflection, transmission and absorption as a function of Si3N4 thickness for the structure marked by (*) in Table 2, translated through Eq. (2) into values equivalent to photocurrent density. The inset shows a zoom-in of the reflection. (b) Corresponding reflectance R(λ) for varying Si3N4 thickness.
Fig. 6
Fig. 6 Photocurrent density jNWs, through Eq. (1), in the nanowire array of Structure 3 (see Fig. 1 for a schematic), as a function of nanowire diameter and array pitch for 2 μm long GaAsP (a) and GaInP (b); and 3 μm long GaAsP (c) and GaInP (d) nanowires.
Fig. 7
Fig. 7 Structure 2 with GaAsP nanowires of Ebg,NWs = 1.7 eV at the larger-diameter HE12 resonance. The ITO thicknesses are indicated in Fig. 1 (b). The geometry parameters are L = 2000 nm, P = 450 nm and D = 280nm with a 10 nm thick passivation shell of n = 3.5, similarly as for the corresponding Structure 1 in Table 1.

Tables (2)

Tables Icon

Table 1 Optimized nanowire diameter D and array pitch P for Structure 1 (see Fig. 1 for a schematic). The values for jNWs, jT, and jR are calculated with Eq. (2).

Tables Icon

Table 2 Optimized nanowire diameter D and array pitch P for Structure 3 (see Fig. 1 for a schematic). The values for jNWs, jITO, jT, and jR are calculated with Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

j NWs = e hc λ start λ bg,NWs λ I AM1.5G A NWs (λ)dλ
j x = e hc λ X,start λ X,end λ I AM1.5G X(λ) dλ

Metrics