Abstract

This paper examines for the first time the potential complementary imaging capabilities of Optical coherence tomography (OCT) and non-linear microscopy (NLM) for multi-modal 3D examination of paintings following the successful application of OCT to the in situ, non-invasive examination of varnish and paint stratigraphy of historic paintings and the promising initial studies of NLM of varnish samples. OCT provides image contrast through the optical scattering and absorption properties of materials, while NLM provides molecular information through multi-photon fluorescence and higher harmonics generation (second and third harmonic generation). OCT is well-established in the in situ non-invasive imaging of the stratigraphy of varnish and paint layers. While NLM examination of transparent samples such as fresh varnish and some transparent paints showed promising results, the ultimate use of NLM on paintings is limited owing to the laser degradation effects caused by the high peak intensity of the laser source necessary for the generation of non-linear phenomena. The high intensity normally employed in NLM is found to be damaging to all non-transparent painting materials from slightly scattering degraded varnish to slightly absorbing paint at the wavelength of the laser excitation source. The results of this paper are potentially applicable to a wide range of materials given the diversity of the materials encountered in paintings (e.g. minerals, plants, insects, oil, egg, synthetic and natural varnish).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high resolution Fourier domain optical coherence tomography for old master paintings

C. S. Cheung, M. Spring, and H. Liang
Opt. Express 23(8) 10145-10157 (2015)

En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation

Haida Liang, Marta Gomez Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, Justin Pedro, and David Saunders
Opt. Express 13(16) 6133-6144 (2005)

High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang
Opt. Express 23(3) 1992-2001 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. M. Goppert-Mayer, “Elementary processes with two-quantum transitions,” Ann. Phys. Berlin 9, 273 (1931).
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  4. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref]
  5. J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
    [Crossref] [PubMed]
  6. M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of Optical Coherence Tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46(2), 171–182 (2004).
    [Crossref]
  7. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects,” Stud. Conserv. 49, 2 (2004).
  8. H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
    [Crossref]
  9. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
    [Crossref] [PubMed]
  10. H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
    [Crossref]
  11. P. Targowski and M. Iwanicka, “Optical Coherence Tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106(2), 256–277 (2012).
  12. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  13. G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, “Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies,” Opt. Lett. 33(3), 240–242 (2008).
    [Crossref] [PubMed]
  14. G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
    [Crossref] [PubMed]
  15. G. Filippidis, K. Melessanaki, and C. Fotakis, “Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks,” Anal. Bioanal. Chem. 395(7), 2161–2166 (2009).
    [Crossref] [PubMed]
  16. S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
    [Crossref] [PubMed]
  17. G. Latour, J. P. Echard, M. Didier, and M. C. Schanne-Klein, “In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy,” Opt. Express 20(22), 24623–24635 (2012).
    [Crossref] [PubMed]
  18. G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
    [Crossref] [PubMed]
  19. G. Filippidis, G. J. Tserevelakis, A. Selimis, and C. Fotakis, “Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies,” Appl. Phys. A Mater. 118(2), 417–423 (2015).
    [Crossref]
  20. F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).
  21. L. Broecke, Cennino Cennini, Il libro dell'arte (Archetype, 2015).
  22. R. W. Boyd, Nonlinear Optics (Academic, 2008) 3rd Ed.
  23. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett. 25(5), 320–322 (2000).
    [Crossref] [PubMed]
  24. J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
    [Crossref]
  25. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24, 969–971 (1999).
  26. S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
    [Crossref] [PubMed]
  27. Q. Wu, B. E. Applegate, and A. T. Yeh, “Cornea microstructure and mechanical responses measured with nonlinear optical and optical coherence microscopy using sub-10-fs pulses,” Biomed. Opt. Express 2(5), 1135–1146 (2011).
    [Crossref] [PubMed]
  28. J. Xi, Y. Chen, Y. Zhang, K. Murari, M. J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012).
    [Crossref] [PubMed]
  29. A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
    [Crossref] [PubMed]
  30. C. S. Cheung, M. Spring, and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for old master paintings,” Opt. Express 23(8), 10145–10157 (2015).
    [Crossref] [PubMed]
  31. C. S. Cheung, J. M. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 3 (2015).
  32. H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B. 111, 4 (2013).
  33. P. M. Whitmore, X. Pan, and C. Bailie, “Predicting The Fading of Objects: Identification of Fugitive Colorants Through Direct Nondestructive Lightfastness Measurements,” J. Am. Inst. Conserv. 38(3), 395 (1999).
    [Crossref]
  34. H. Liang R. Lange, A. Lucian, P. Hyndes, J.H. Townsend and S. Hackney, “Development of portable microfading spectrometers for measurement of light sensitivity of materials,” International Council of Museums, Committee for Conservation (ICOM-CC) Triennial Conference Preprints, Lisbon, 1612_882 (2011).
  35. A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).
  36. L. Burgio, R. J. H. Clark, and S. Firth, “Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products,” Analyst (Lond.) 126(2), 222–227 (2001).
    [Crossref] [PubMed]
  37. S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
    [Crossref] [PubMed]
  38. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]

2016 (2)

S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
[Crossref] [PubMed]

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

2015 (6)

G. Filippidis, G. J. Tserevelakis, A. Selimis, and C. Fotakis, “Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies,” Appl. Phys. A Mater. 118(2), 417–423 (2015).
[Crossref]

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

C. S. Cheung, J. M. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 3 (2015).

A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).

C. S. Cheung, M. Spring, and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for old master paintings,” Opt. Express 23(8), 10145–10157 (2015).
[Crossref] [PubMed]

2014 (1)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

2013 (3)

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B. 111, 4 (2013).

2012 (3)

2011 (1)

2009 (1)

G. Filippidis, K. Melessanaki, and C. Fotakis, “Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks,” Anal. Bioanal. Chem. 395(7), 2161–2166 (2009).
[Crossref] [PubMed]

2008 (3)

G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, “Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies,” Opt. Lett. 33(3), 240–242 (2008).
[Crossref] [PubMed]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
[Crossref] [PubMed]

2006 (1)

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of Optical Coherence Tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46(2), 171–182 (2004).
[Crossref]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects,” Stud. Conserv. 49, 2 (2004).

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2001 (2)

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

L. Burgio, R. J. H. Clark, and S. Firth, “Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products,” Analyst (Lond.) 126(2), 222–227 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (2)

E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24, 969–971 (1999).

P. M. Whitmore, X. Pan, and C. Bailie, “Predicting The Fading of Objects: Identification of Fugitive Colorants Through Direct Nondestructive Lightfastness Measurements,” J. Am. Inst. Conserv. 38(3), 395 (1999).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1931 (1)

M. Goppert-Mayer, “Elementary processes with two-quantum transitions,” Ann. Phys. Berlin 9, 273 (1931).

Alex, A.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Amblard, F.

Applegate, B. E.

Bailie, C.

P. M. Whitmore, X. Pan, and C. Bailie, “Predicting The Fading of Objects: Identification of Fugitive Colorants Through Direct Nondestructive Lightfastness Measurements,” J. Am. Inst. Conserv. 38(3), 395 (1999).
[Crossref]

Beaurepaire, E.

Binder, M.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Blanchard-Desce, M.

Brookes, A.

A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).

Brown, W.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

Burgio, L.

L. Burgio, R. J. H. Clark, and S. Firth, “Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products,” Analyst (Lond.) 126(2), 222–227 (2001).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
[Crossref] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[Crossref] [PubMed]

Cheung, C. S.

C. S. Cheung, J. M. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 3 (2015).

C. S. Cheung, M. Spring, and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for old master paintings,” Opt. Express 23(8), 10145–10157 (2015).
[Crossref] [PubMed]

Cid, M.

Clark, R. J. H.

L. Burgio, R. J. H. Clark, and S. Firth, “Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products,” Analyst (Lond.) 126(2), 222–227 (2001).
[Crossref] [PubMed]

Clarkson, W. A.

C. S. Cheung, J. M. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 3 (2015).

Cucu, R.

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Daniel, J. M.

C. S. Cheung, J. M. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 3 (2015).

Dazzi, A.

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

Deniset-Besseau, A.

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Didier, M.

Dobre, G.

Dobre, G. M.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Echard, J. P.

Faraldi, F.

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Filippidis, G.

S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
[Crossref] [PubMed]

G. Filippidis, G. J. Tserevelakis, A. Selimis, and C. Fotakis, “Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies,” Appl. Phys. A Mater. 118(2), 417–423 (2015).
[Crossref]

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

G. Filippidis, K. Melessanaki, and C. Fotakis, “Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks,” Anal. Bioanal. Chem. 395(7), 2161–2166 (2009).
[Crossref] [PubMed]

G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, “Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies,” Opt. Lett. 33(3), 240–242 (2008).
[Crossref] [PubMed]

Firth, S.

L. Burgio, R. J. H. Clark, and S. Firth, “Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products,” Analyst (Lond.) 126(2), 222–227 (2001).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fotakis, C.

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

G. Filippidis, G. J. Tserevelakis, A. Selimis, and C. Fotakis, “Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies,” Appl. Phys. A Mater. 118(2), 417–423 (2015).
[Crossref]

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

G. Filippidis, K. Melessanaki, and C. Fotakis, “Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks,” Anal. Bioanal. Chem. 395(7), 2161–2166 (2009).
[Crossref] [PubMed]

G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, “Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies,” Opt. Lett. 33(3), 240–242 (2008).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gavgiotaki, E.

S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
[Crossref] [PubMed]

Goppert-Mayer, M.

M. Goppert-Mayer, “Elementary processes with two-quantum transitions,” Ann. Phys. Berlin 9, 273 (1931).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gualda, E. J.

Hackney, S.

A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hsu, I. J.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of Optical Coherence Tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46(2), 171–182 (2004).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hughes, M.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Ingo, G. M.

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

Iwanicka, M.

P. Targowski and M. Iwanicka, “Optical Coherence Tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106(2), 256–277 (2012).

Jackson, D. A.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Kelegkouri, L.

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

Kellner-Höfer, M.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Kim, J.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

König, K.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Kowalczyk, A.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects,” Stud. Conserv. 49, 2 (2004).

Krasieva, T.

S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
[Crossref] [PubMed]

Krasieva, T. B.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[Crossref] [PubMed]

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B. 111, 4 (2013).

Latour, G.

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

G. Latour, J. P. Echard, M. Didier, and M. C. Schanne-Klein, “In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy,” Opt. Express 20(22), 24623–24635 (2012).
[Crossref] [PubMed]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Lerwill, A.

A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).

Levinson, H.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

Li, M. J.

Li, X.

Liang, H.

C. S. Cheung, M. Spring, and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for old master paintings,” Opt. Express 23(8), 10145–10157 (2015).
[Crossref] [PubMed]

C. S. Cheung, J. M. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 3 (2015).

A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B. 111, 4 (2013).

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Lu, C. W.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of Optical Coherence Tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46(2), 171–182 (2004).
[Crossref]

Maher, J. R.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

Mari, M.

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

Melessanaki, K.

S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
[Crossref] [PubMed]

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

G. Filippidis, K. Melessanaki, and C. Fotakis, “Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks,” Anal. Bioanal. Chem. 395(7), 2161–2166 (2009).
[Crossref] [PubMed]

G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, “Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies,” Opt. Lett. 33(3), 240–242 (2008).
[Crossref] [PubMed]

Mertz, J.

Moreaux, L.

Muller, M.

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Murari, K.

Nemecek, R.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Pan, X.

P. M. Whitmore, X. Pan, and C. Bailie, “Predicting The Fading of Objects: Identification of Fugitive Colorants Through Direct Nondestructive Lightfastness Measurements,” J. Am. Inst. Conserv. 38(3), 395 (1999).
[Crossref]

Pannell, C.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Pedro, J.

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Pehamberger, H.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B. 111, 4 (2013).

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Philippidis, A.

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

Podoleanu, A.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

Podoleanu, A. G.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Portier, F.

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Riccucci, C.

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

Robinet, L.

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

Roehrs, S.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Rouba, B.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects,” Stud. Conserv. 49, 2 (2004).

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Sandre, O.

Saunders, C.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

Saunders, D.

Schanne-Klein, M. C.

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

G. Latour, J. P. Echard, M. Didier, and M. C. Schanne-Klein, “In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy,” Opt. Express 20(22), 24623–24635 (2012).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Selimis, A.

G. Filippidis, G. J. Tserevelakis, A. Selimis, and C. Fotakis, “Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies,” Appl. Phys. A Mater. 118(2), 417–423 (2015).
[Crossref]

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Spring, M.

C. S. Cheung, M. Spring, and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for old master paintings,” Opt. Express 23(8), 10145–10157 (2015).
[Crossref] [PubMed]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B. 111, 4 (2013).

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Squier, J.

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sygletou, M.

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

Tang, S.

S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
[Crossref] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[Crossref] [PubMed]

Targowski, P.

P. Targowski and M. Iwanicka, “Optical Coherence Tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106(2), 256–277 (2012).

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects,” Stud. Conserv. 49, 2 (2004).

Tempea, G.

S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
[Crossref] [PubMed]

Tokurakawa, M.

C. S. Cheung, J. M. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 3 (2015).

Townsend, J.H.

A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).

Tromberg, B.

S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
[Crossref] [PubMed]

Tromberg, B. J.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[Crossref] [PubMed]

Tsafas, V.

S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
[Crossref] [PubMed]

Tserevelakis, G. J.

G. Filippidis, G. J. Tserevelakis, A. Selimis, and C. Fotakis, “Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies,” Appl. Phys. A Mater. 118(2), 417–423 (2015).
[Crossref]

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Wax, A.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weingast, J.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Weinigel, M.

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Whitmore, P. M.

P. M. Whitmore, X. Pan, and C. Bailie, “Predicting The Fading of Objects: Identification of Fugitive Colorants Through Direct Nondestructive Lightfastness Measurements,” J. Am. Inst. Conserv. 38(3), 395 (1999).
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wojtkowski, M.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects,” Stud. Conserv. 49, 2 (2004).

Wu, Q.

Xi, J.

Yang, C. C.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of Optical Coherence Tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46(2), 171–182 (2004).
[Crossref]

Yang, M. L.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of Optical Coherence Tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46(2), 171–182 (2004).
[Crossref]

Yeh, A. T.

Zhang, Y.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

G. Filippidis, K. Melessanaki, and C. Fotakis, “Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks,” Anal. Bioanal. Chem. 395(7), 2161–2166 (2009).
[Crossref] [PubMed]

Analyst (Lond.) (1)

L. Burgio, R. J. H. Clark, and S. Firth, “Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products,” Analyst (Lond.) 126(2), 222–227 (2001).
[Crossref] [PubMed]

Ann. Phys. Berlin (1)

M. Goppert-Mayer, “Elementary processes with two-quantum transitions,” Ann. Phys. Berlin 9, 273 (1931).

Appl. Phys. A (1)

P. Targowski and M. Iwanicka, “Optical Coherence Tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106(2), 256–277 (2012).

Appl. Phys. A Mater. (2)

G. Filippidis, G. J. Tserevelakis, A. Selimis, and C. Fotakis, “Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies,” Appl. Phys. A Mater. 118(2), 417–423 (2015).
[Crossref]

F. Faraldi, G. J. Tserevelakis, G. Filippidis, G. M. Ingo, C. Riccucci, and C. Fotakis, “Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts,” Appl. Phys. A Mater. 111, 171–181 (2013).

Appl. Phys. A. (1)

A. Lerwill, A. Brookes, J.H. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A. 118, 457–463 (2015).

Appl. Phys. B. (1)

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B. 111, 4 (2013).

Archaeometry (1)

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of Optical Coherence Tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46(2), 171–182 (2004).
[Crossref]

Biomed. Opt. Express (1)

J. Am. Inst. Conserv. (1)

P. M. Whitmore, X. Pan, and C. Bailie, “Predicting The Fading of Objects: Identification of Fugitive Colorants Through Direct Nondestructive Lightfastness Measurements,” J. Am. Inst. Conserv. 38(3), 395 (1999).
[Crossref]

J. Biomed. Opt. (3)

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

S. Tang, T. Krasieva, Z. Chen, G. Tempea, and B. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020501 (2008).
[Crossref] [PubMed]

J. Biophotonics (1)

A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J. Biophotonics 6(4), 352–362 (2013).
[Crossref] [PubMed]

Microsc. Microanal. (2)

G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, and C. Fotakis, “Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques,” Microsc. Microanal. 21(2), 510–517 (2015).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, and G. Filippidis, “Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage,” Microsc. Microanal. 22(5), 1072–1083 (2016).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Med. Biol. (1)

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Proc. SPIE (2)

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, C. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378–381 (2004).
[Crossref]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science - a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Sci. Rep. (1)

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, and M. C. Schanne-Klein, “Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments,” Sci. Rep. 6(1), 26344 (2016).
[Crossref] [PubMed]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Stud. Conserv. (1)

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects,” Stud. Conserv. 49, 2 (2004).

Other (3)

L. Broecke, Cennino Cennini, Il libro dell'arte (Archetype, 2015).

R. W. Boyd, Nonlinear Optics (Academic, 2008) 3rd Ed.

H. Liang R. Lange, A. Lucian, P. Hyndes, J.H. Townsend and S. Hackney, “Development of portable microfading spectrometers for measurement of light sensitivity of materials,” International Council of Museums, Committee for Conservation (ICOM-CC) Triennial Conference Preprints, Lisbon, 1612_882 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) OCT image of two layers of different varnish (vinavil on mastic) painted on a thin glass slide. b) NLM multi-modal image of the same sample where the multi-photon excitation fluorescence (red) and third harmonic generation (yellow) images are superposed. Note that the OCT image aspect ratio is not 1:1, but the NLM images are 1:1 in aspect ratio.

Fig. 2
Fig. 2

a) Fluorescence intensity versus depth for samples of dammar and mastic varnish on glass; the thicknesses of dammar (red curve) and mastic (black curve) are measured from multi-photon excitation fluorescence images of b) fresh mastic and c) fresh dammar. The images have 1:1 aspect ratios.

Fig. 3
Fig. 3

Sappanwood lake in oil painted on glass: a) multi-photon excitation fluorescence image (1:1 aspect ratio) showing the top ~70 microns of the paint layer and b) 810nm OCT image (average of 10 frames) showing the paint layer thickness of 100-200 microns.

Fig. 4
Fig. 4

Lapis Lazuli in oil painted on glass: a) multi-photon excitation fluorescence image (1:1 aspect ratio) showing a thickness of ~30 microns; b) 1960 nm long wavelength OCT image showing a thickness of ~100-150 microns and c) 810 nm UHR OCT image showing the paint layer on glass (left most side shows the bare glass surface but the paint/glass interface is not seen due to absorption).

Fig. 5
Fig. 5

Experimental setup for measuring laser induced degradation in the paint and varnish samples.

Fig. 6
Fig. 6

Difference spectra for reflectance of a) a white standard without laser irradiation over a period of 10 mins showing the stability of the spectrometer system; b) a cochineal oil paint on a glass slide after each Nd:Yag laser pulse at full power; c) a cochineal egg tempera paint on a glass slide after each laser pulse at full power. The insets are 810nm OCT images of the samples showing the cochineal oil paint is fairly transparent but the cochineal in egg tempera paint is much more scattering.

Fig. 7
Fig. 7

Reflectance spectra of a layer of red lead oil paint on a glass slide after irradiation with the Nd:Yag ns pulsed laser: a) after 1 to 100 pulses at 0.3 mJ per pulse (or 0.6% of full power), b) after 1 to 4 pulses at 1 mJ per pulse (or 2% of full power).

Tables (2)

Tables Icon

Table 1 Pigment samples

Tables Icon

Table 2 Light intensity and fluence comparison