Abstract

We demonstrate the nonreciprocal optical phenomenon of SiC gratings on substrate in infrared band, in which the Lorentz-Drude equations of dielectric constant tensor are proposed to describe the nonreciprocal optical properties as magnetic field applied on the magneto-optical materials, under variable intensity and wavelength. Moreover, the properly designed geometrical factors are proposed, and the good nonreciprocal absorption properties of SiC in thermal radiation wavelength band are presented. The dependence of the absorptivity as a function of different structure parameters, such as thickness of different layers, filling ratios, is studied in details. Furthermore, the electric field intensity is also presented for understanding light coupling, propagation. Numerical evidence shows that the nonreciprocal absorption performance is sensitive to the incidence angle, as well as the magnetic field strength. The relative study is useful to the thermal radiative design in photovoltaic and optical instrument.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic magneto-Stark effect based on gradiently modulated magneto-optical medium

Wanguo Liu, Fenghua Liu, and Hua Zhao
Opt. Express 26(2) 835-844 (2018)

Grating-type mid-infrared light absorber based on silicon carbide material

Wenrui Xue, Xi Chen, Yanling Peng, and Rongcao Yang
Opt. Express 24(20) 22596-22605 (2016)

Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film

Cheng He, Xiao-Chen Sun, Zhen Zhang, Chang-Sheng Yuan, Ming-Hui Lu, Yan-Feng Chen, and Cheng Sun
Opt. Express 21(23) 28933-28940 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Zhu, Y. M. Xuan, and B. Shi, “Plasmon resonance enhanced light absorption of mono-crystalline silicon solar cell,” Chin Shu Hsueh Pao 35, 2425–2429 (2014).
  2. Y. P. Xu and Y. M. Xuan, “Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells,” J. Nanopart. Res. 17(7), 314 (2015).
    [Crossref]
  3. J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
    [Crossref]
  4. Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  5. H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J Quant Spectrosc Radiat Transf NLM. 158, 127–135 (2015).
    [Crossref]
  6. B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
    [Crossref]
  7. X. L. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
    [Crossref]
  8. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  9. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [PubMed]
  10. Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
    [Crossref]
  11. N. P. Dasgupta and P. Yang, “Semiconductor nanowires for photovoltaic and photoelectron chemical energy conversion,” Front. Phys. 9(3), 289–302 (2014).
    [Crossref]
  12. Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
    [Crossref]
  13. M. A. Green, “Time-asymmetric photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
    [Crossref] [PubMed]
  14. L. X. Zhu and S. H. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
    [Crossref]
  15. W. H. Gu, S. J. Chang, F. Fan, and X. Z. Zhang, “InSb based subwavelength array for terahertz wave focusing,” Wuli Xuebao 65(1), 010701 (2016).
  16. C. J. Tabert and E. J. Nicol, “Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals,” Phys. Rev. Lett. 110(19), 197402 (2013).
    [Crossref] [PubMed]
  17. Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
    [Crossref]
  18. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
    [Crossref] [PubMed]
  19. H. Mehdian, Z. Mohammadzahery, and A. Hasanbeigi, “Optical and magneto-optical properties of plasma-magnetic metamaterials,” J. Phys. D Appl. Phys. 48(30), 305101 (2015).
    [Crossref]
  20. V. I. Pipa, A. I. Liptuga, and V. Morozhenko, “Thermal emission of one-dimensional magnetophotonic crystals,” J. Opt. 15(7), 075104 (2013).
    [Crossref]
  21. E. D. Palik, Handbook of Optical Constants of Solids 547–569 (1985).

2017 (1)

Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
[Crossref]

2016 (2)

W. H. Gu, S. J. Chang, F. Fan, and X. Z. Zhang, “InSb based subwavelength array for terahertz wave focusing,” Wuli Xuebao 65(1), 010701 (2016).

Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

2015 (5)

X. L. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

Y. P. Xu and Y. M. Xuan, “Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells,” J. Nanopart. Res. 17(7), 314 (2015).
[Crossref]

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J Quant Spectrosc Radiat Transf NLM. 158, 127–135 (2015).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

H. Mehdian, Z. Mohammadzahery, and A. Hasanbeigi, “Optical and magneto-optical properties of plasma-magnetic metamaterials,” J. Phys. D Appl. Phys. 48(30), 305101 (2015).
[Crossref]

2014 (6)

Y. X. Zhu, Y. M. Xuan, and B. Shi, “Plasmon resonance enhanced light absorption of mono-crystalline silicon solar cell,” Chin Shu Hsueh Pao 35, 2425–2429 (2014).

L. X. Zhu and S. H. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

N. P. Dasgupta and P. Yang, “Semiconductor nanowires for photovoltaic and photoelectron chemical energy conversion,” Front. Phys. 9(3), 289–302 (2014).
[Crossref]

2013 (5)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

C. J. Tabert and E. J. Nicol, “Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals,” Phys. Rev. Lett. 110(19), 197402 (2013).
[Crossref] [PubMed]

V. I. Pipa, A. I. Liptuga, and V. Morozhenko, “Thermal emission of one-dimensional magnetophotonic crystals,” J. Opt. 15(7), 075104 (2013).
[Crossref]

2012 (1)

M. A. Green, “Time-asymmetric photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
[Crossref] [PubMed]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chang, S. J.

W. H. Gu, S. J. Chang, F. Fan, and X. Z. Zhang, “InSb based subwavelength array for terahertz wave focusing,” Wuli Xuebao 65(1), 010701 (2016).

Chen, Z.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Cui, Y. X.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dasgupta, N. P.

N. P. Dasgupta and P. Yang, “Semiconductor nanowires for photovoltaic and photoelectron chemical energy conversion,” Front. Phys. 9(3), 289–302 (2014).
[Crossref]

Ding, F.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dregely, D.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Fan, F.

W. H. Gu, S. J. Chang, F. Fan, and X. Z. Zhang, “InSb based subwavelength array for terahertz wave focusing,” Wuli Xuebao 65(1), 010701 (2016).

Fan, S.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Fan, S. H.

L. X. Zhu and S. H. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, “Time-asymmetric photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
[Crossref] [PubMed]

Gu, W. H.

W. H. Gu, S. J. Chang, F. Fan, and X. Z. Zhang, “InSb based subwavelength array for terahertz wave focusing,” Wuli Xuebao 65(1), 010701 (2016).

Hang, Y.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Hasanbeigi, A.

H. Mehdian, Z. Mohammadzahery, and A. Hasanbeigi, “Optical and magneto-optical properties of plasma-magnetic metamaterials,” J. Phys. D Appl. Phys. 48(30), 305101 (2015).
[Crossref]

He, S. L.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, Y. R.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hong, J. Q.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Huang, X.

Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
[Crossref]

Jiang, Y. Q.

Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
[Crossref]

Jin, Y.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Lee, K. J.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Lin, Y. Y.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Liptuga, A. I.

V. I. Pipa, A. I. Liptuga, and V. Morozhenko, “Thermal emission of one-dimensional magnetophotonic crystals,” J. Opt. 15(7), 075104 (2013).
[Crossref]

Liu, X. L.

X. L. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

Magnusson, R.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Mehdian, H.

H. Mehdian, Z. Mohammadzahery, and A. Hasanbeigi, “Optical and magneto-optical properties of plasma-magnetic metamaterials,” J. Phys. D Appl. Phys. 48(30), 305101 (2015).
[Crossref]

Mohammadzahery, Z.

H. Mehdian, Z. Mohammadzahery, and A. Hasanbeigi, “Optical and magneto-optical properties of plasma-magnetic metamaterials,” J. Phys. D Appl. Phys. 48(30), 305101 (2015).
[Crossref]

Morozhenko, V.

V. I. Pipa, A. I. Liptuga, and V. Morozhenko, “Thermal emission of one-dimensional magnetophotonic crystals,” J. Opt. 15(7), 075104 (2013).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nicol, E. J.

C. J. Tabert and E. J. Nicol, “Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals,” Phys. Rev. Lett. 110(19), 197402 (2013).
[Crossref] [PubMed]

Pipa, V. I.

V. I. Pipa, A. I. Liptuga, and V. Morozhenko, “Thermal emission of one-dimensional magnetophotonic crystals,” J. Opt. 15(7), 075104 (2013).
[Crossref]

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Rephaeli, E.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Ruan, Z. H.

Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
[Crossref]

Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Shi, B.

Y. X. Zhu, Y. M. Xuan, and B. Shi, “Plasmon resonance enhanced light absorption of mono-crystalline silicon solar cell,” Chin Shu Hsueh Pao 35, 2425–2429 (2014).

Shi, C. J.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Shuai, Y.

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Tabert, C. J.

C. J. Tabert and E. J. Nicol, “Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals,” Phys. Rev. Lett. 110(19), 197402 (2013).
[Crossref] [PubMed]

Tan, H. P.

Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
[Crossref]

Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, H.

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J Quant Spectrosc Radiat Transf NLM. 158, 127–135 (2015).
[Crossref]

Wang, J.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Wang, L. P.

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J Quant Spectrosc Radiat Transf NLM. 158, 127–135 (2015).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Wang, X. Y.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Wang, Y. Q.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Wu, W.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Xu, Y. P.

Y. P. Xu and Y. M. Xuan, “Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells,” J. Nanopart. Res. 17(7), 314 (2015).
[Crossref]

Xuan, Y. M.

Y. P. Xu and Y. M. Xuan, “Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells,” J. Nanopart. Res. 17(7), 314 (2015).
[Crossref]

Y. X. Zhu, Y. M. Xuan, and B. Shi, “Plasmon resonance enhanced light absorption of mono-crystalline silicon solar cell,” Chin Shu Hsueh Pao 35, 2425–2429 (2014).

Yang, L.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, P.

N. P. Dasgupta and P. Yang, “Semiconductor nanowires for photovoltaic and photoelectron chemical energy conversion,” Front. Phys. 9(3), 289–302 (2014).
[Crossref]

Ye, Y. Q.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yong, S.

Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Yoon, J. W.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Yuan, Y.

Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
[Crossref]

Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Zhang, P. X.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Zhang, X. X.

Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Zhang, X. Z.

W. H. Gu, S. J. Chang, F. Fan, and X. Z. Zhang, “InSb based subwavelength array for terahertz wave focusing,” Wuli Xuebao 65(1), 010701 (2016).

Zhang, Z. M.

X. L. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Zhao, B.

X. L. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Zhong, S. M.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhu, L. X.

L. X. Zhu and S. H. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

Zhu, Y. X.

Y. X. Zhu, Y. M. Xuan, and B. Shi, “Plasmon resonance enhanced light absorption of mono-crystalline silicon solar cell,” Chin Shu Hsueh Pao 35, 2425–2429 (2014).

Adv. Opt. Mater. (1)

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Chin Shu Hsueh Pao (1)

Y. X. Zhu, Y. M. Xuan, and B. Shi, “Plasmon resonance enhanced light absorption of mono-crystalline silicon solar cell,” Chin Shu Hsueh Pao 35, 2425–2429 (2014).

Front. Phys. (1)

N. P. Dasgupta and P. Yang, “Semiconductor nanowires for photovoltaic and photoelectron chemical energy conversion,” Front. Phys. 9(3), 289–302 (2014).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J Quant Spectrosc Radiat Transf NLM. (1)

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J Quant Spectrosc Radiat Transf NLM. 158, 127–135 (2015).
[Crossref]

J. Catal. (1)

Y. Yuan, Z. H. Ruan, X. Huang, Y. Q. Jiang, and H. P. Tan, “Energy-absorption-based explanation of the TiO2/C photocatalytic activity enhancement mechanism,” J. Catal. 348, 246–255 (2017).
[Crossref]

J. Nanopart. Res. (1)

Y. P. Xu and Y. M. Xuan, “Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells,” J. Nanopart. Res. 17(7), 314 (2015).
[Crossref]

J. Opt. (1)

V. I. Pipa, A. I. Liptuga, and V. Morozhenko, “Thermal emission of one-dimensional magnetophotonic crystals,” J. Opt. 15(7), 075104 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Mehdian, Z. Mohammadzahery, and A. Hasanbeigi, “Optical and magneto-optical properties of plasma-magnetic metamaterials,” J. Phys. D Appl. Phys. 48(30), 305101 (2015).
[Crossref]

Laser Photonics Rev. (1)

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Mater. Lett. (1)

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Y. Wang, P. X. Zhang, J. Q. Hong, C. J. Shi, and Y. Q. Wang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Nano Lett. (2)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

M. A. Green, “Time-asymmetric photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Phys. Rev. A (1)

X. L. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

Phys. Rev. B (1)

L. X. Zhu and S. H. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

Phys. Rev. Lett. (1)

C. J. Tabert and E. J. Nicol, “Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals,” Phys. Rev. Lett. 110(19), 197402 (2013).
[Crossref] [PubMed]

Sol. Energy (1)

Z. H. Ruan, Y. Yuan, X. X. Zhang, S. Yong, and H. P. Tan, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Wuli Xuebao (1)

W. H. Gu, S. J. Chang, F. Fan, and X. Z. Zhang, “InSb based subwavelength array for terahertz wave focusing,” Wuli Xuebao 65(1), 010701 (2016).

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids 547–569 (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Dielectric constant of SiC for real and imagery part.
Fig. 2
Fig. 2 Schematic of a photonic crystal structure for nonreciprocal effect.
Fig. 3
Fig. 3 Comparison of the absorptance in this work with that in [14].
Fig. 4
Fig. 4 Equivalent refractive index n of SiC under magnetic field B = 5T.
Fig. 5
Fig. 5 Equivalent refractive index n of SiC under magnetic field B = 10T.
Fig. 6
Fig. 6 Absorptivity of different thickness for two layers with variable incidence angle.
Fig. 7
Fig. 7 Absorptivity of SiC gratings with variable incidence angle under different magnetic field intensity (a) B = 5T, (b) B = 10T.
Fig. 8
Fig. 8 Contour plots along the z-y plane of the Electrical intensity of SiC with variable incidence angle under magnetic field B = 5T and 10T.
Fig. 9
Fig. 9 Absorptivity of SiC with variable filling ratios under magnetic field B = 5T, (a) f = 0.4, (b) f = 0.7.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε=( ε xx ε xy ε xz ε yx ε yy ε yz ε zx ε zy ε zz )
ε = C 4 1 ε C 4 =( ε yy ε yx ε yz ε xy ε xx ε xz ε zy ε zx ε zz )
ε=( ε xx ε xy 0 ε xy ε xx 0 0 0 ε zz )
ε( ω )= ε ω p 2 ω( ω+iγ )
ε( ω )= ε ( 1+ ω p 2 ω T 2 ω 2 iγω )
ε ¯ =( ε ( 1 ω p 2 ( ω+γi ) ω[ ( ω+γi ) 2 ω c 2 ] ω T 2 ( ω+γi ) ) i ω P 2 ω c ω[ ( ω+γi ) 2 ω c 2 ] ω T 2 ( ω+γi ) 0 i ω P 2 ω c ω[ ( ω+γi ) 2 ω c 2 ] ω T 2 ( ω+γi ) ε ( 1 ω p 2 ( ω+γi ) ω[ ( ω+γi ) 2 ω c 2 ] ω T 2 ( ω+γi ) ) 0 0 0 ε ( 1+ ω p 2 ω T 2 ω 2 iγω ) )
A=1R
ε ˜ D =U ε ˜ U=( ε xx 0 0 0 ε yy 0 0 0 ε zz )=( n xx 2 0 0 0 n yy 2 0 0 0 n zz 2 )

Metrics