Abstract

We report the surface cladding-like waveguide fabricated by the cooperation of the ultrafast laser writing and the ion irradiation. The ultrafast laser writes tracks near the surface of the Nd:YAG crystal, constructing a semi-circle columnar structure with a decreased refractive index of – 0.00208. Then, the Nd:YAG crystal is irradiated by the Carbon ion beam, forming an enhanced-well in the semi-circle columnar with an increased refractive index of + 0.0024. Tracks and the enhanced-well consisted a surface cladding-like waveguide. Utilizing this cladding-like waveguide as the gain medium for the waveguide lasing, optimized characterizations were observed compared with the monolayer waveguide. This work demonstrates the refractive index of the Nd:YAG crystal can be well tailored by the cooperation of the ultrafast laser writing and the ion irradiation, which provides an convenient way to fabricate the complex and multilayered photonics devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene

Yang Tan, Chen Cheng, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen
Opt. Express 22(8) 9101-9106 (2014)

Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides

Yang Tan, Qingfang Luan, Fengqin Liu, Feng Chen, and Javier Rodríguez Vázquez de Aldana
Opt. Express 21(16) 18963-18968 (2013)

Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide

Yang Tan, Shavkat Akhmadaliev, Shengqiang Zhou, Shangqian Sun, and Feng Chen
Opt. Express 22(3) 3572-3577 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, L. Reekie, and J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33(22), 1897–1898 (1997).
    [Crossref]
  2. Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
    [Crossref] [PubMed]
  3. D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
    [Crossref]
  4. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  5. X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
    [Crossref] [PubMed]
  6. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  7. H. X. Kang, H. T. Zhang, and D. S. Wang, “Thermal-induced refractive-index planar waveguide laser,” Appl. Phys. Lett. 95(18), 181102 (2009).
    [Crossref]
  8. R. Villagomez, R. Lopez, R. Cortes, and V. Coello, “Integral plug-in RF module in a CO2 hybrid-waveguide laser: Its performance and overall evaluation,” Optik (Stuttg.) 118(3), 110–114 (2007).
    [Crossref]
  9. W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
    [Crossref]
  10. E. A. Avrutin, B. S. Ryvkin, J. T. Kostamovaara, and D. V. Kuksenkov, “Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates,” Semicond. Sci. Technol. 30(5), 055006 (2015).
    [Crossref]
  11. L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
    [Crossref]
  12. F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-laser O. 105(4), 871–875 (2011).
    [Crossref]
  13. M. Khanlary, D. E. Hole, and P. D. Townsend, “Ion beam luminescence of Nd:YAG,” Nucl. Instrum. Meth. B. 227(3), 379–384 (2005).
    [Crossref]
  14. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  15. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
    [Crossref]
  16. T. Calmano and S. Mueller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Top. Quant. 21(1), 1602213 (2015).
  17. N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
    [Crossref]
  18. I. Chartier, B. Ferrand, D. Pelenc, S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, and A. C. Tropper, “Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide,” Opt. Lett. 17(11), 810–812 (1992).
    [Crossref] [PubMed]
  19. F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-Lasers O. 105(4), 871–875 (2011).
    [Crossref]
  20. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
    [Crossref] [PubMed]
  21. T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
    [Crossref]
  22. G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
    [Crossref]
  23. C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
    [Crossref]
  24. Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
    [Crossref] [PubMed]
  25. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
    [Crossref]
  26. H. L. Liu, J. R. Vázquez de Aldana, B. del Rosal Rabes, and F. Chen, “Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription,” Opt. Mater. 39, 125–129 (2015).
    [Crossref]
  27. Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
    [Crossref]
  28. RSoft Design Group, Computer software BandSLOVE, http://www.rsoftdesign.com
  29. Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
    [Crossref] [PubMed]
  30. Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
    [Crossref]
  31. L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
    [Crossref]
  32. Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
    [Crossref]

2017 (3)

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

2016 (3)

C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
[Crossref]

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

2015 (4)

T. Calmano and S. Mueller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Top. Quant. 21(1), 1602213 (2015).

E. A. Avrutin, B. S. Ryvkin, J. T. Kostamovaara, and D. V. Kuksenkov, “Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates,” Semicond. Sci. Technol. 30(5), 055006 (2015).
[Crossref]

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref] [PubMed]

H. L. Liu, J. R. Vázquez de Aldana, B. del Rosal Rabes, and F. Chen, “Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription,” Opt. Mater. 39, 125–129 (2015).
[Crossref]

2014 (3)

Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (6)

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-Lasers O. 105(4), 871–875 (2011).
[Crossref]

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-laser O. 105(4), 871–875 (2011).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

2010 (1)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
[Crossref]

2009 (1)

H. X. Kang, H. T. Zhang, and D. S. Wang, “Thermal-induced refractive-index planar waveguide laser,” Appl. Phys. Lett. 95(18), 181102 (2009).
[Crossref]

2008 (1)

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

2007 (2)

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

R. Villagomez, R. Lopez, R. Cortes, and V. Coello, “Integral plug-in RF module in a CO2 hybrid-waveguide laser: Its performance and overall evaluation,” Optik (Stuttg.) 118(3), 110–114 (2007).
[Crossref]

2005 (1)

M. Khanlary, D. E. Hole, and P. D. Townsend, “Ion beam luminescence of Nd:YAG,” Nucl. Instrum. Meth. B. 227(3), 379–384 (2005).
[Crossref]

1999 (1)

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

1997 (1)

L. Dong, L. Reekie, and J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33(22), 1897–1898 (1997).
[Crossref]

1996 (1)

1992 (1)

Akhmadaliev, S.

Atkin, D. M.

Avrutin, E. A.

E. A. Avrutin, B. S. Ryvkin, J. T. Kostamovaara, and D. V. Kuksenkov, “Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates,” Semicond. Sci. Technol. 30(5), 055006 (2015).
[Crossref]

Beecher, S. J.

Berry, P. A.

Birks, T. A.

Boettger, R.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Brattain, M. A.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

Brown, G.

Calmano, T.

T. Calmano and S. Mueller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Top. Quant. 21(1), 1602213 (2015).

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
[Crossref]

Cen, Y.

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Cerullo, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Chartier, I.

Chen, F.

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
[Crossref]

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref] [PubMed]

H. L. Liu, J. R. Vázquez de Aldana, B. del Rosal Rabes, and F. Chen, “Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription,” Opt. Mater. 39, 125–129 (2015).
[Crossref]

Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
[Crossref] [PubMed]

Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Chen, M.

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Cheng, C.

C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
[Crossref]

Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
[Crossref] [PubMed]

Chiodo, N.

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Coello, V.

R. Villagomez, R. Lopez, R. Cortes, and V. Coello, “Integral plug-in RF module in a CO2 hybrid-waveguide laser: Its performance and overall evaluation,” Optik (Stuttg.) 118(3), 110–114 (2007).
[Crossref]

Corrielli, G.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Cortes, R.

R. Villagomez, R. Lopez, R. Cortes, and V. Coello, “Integral plug-in RF module in a CO2 hybrid-waveguide laser: Its performance and overall evaluation,” Optik (Stuttg.) 118(3), 110–114 (2007).
[Crossref]

Cruz, J. L.

L. Dong, L. Reekie, and J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33(22), 1897–1898 (1997).
[Crossref]

Dai, J. W.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

de Riedmatten, H.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

del Rosal Rabes, B.

H. L. Liu, J. R. Vázquez de Aldana, B. del Rosal Rabes, and F. Chen, “Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription,” Opt. Mater. 39, 125–129 (2015).
[Crossref]

Dong, L.

L. Dong, L. Reekie, and J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33(22), 1897–1898 (1997).
[Crossref]

Ferrand, B.

Field, S. J.

Filippov, V. N.

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

Fredrich-Thornton, S. T.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Gao, Z.

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Gavrilovic, P.

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

Ge, L.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Ghorbani-Asl, M.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Goitia, A.

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Hanna, D. C.

He, R. Y.

Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

He, Z. L.

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
[Crossref]

Hole, D. E.

M. Khanlary, D. E. Hole, and P. D. Townsend, “Ion beam luminescence of Nd:YAG,” Nucl. Instrum. Meth. B. 227(3), 379–384 (2005).
[Crossref]

Huang, Z.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Huber, G.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
[Crossref]

Jaque, D.

C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
[Crossref]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

Jha, A.

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Jia, Y. C.

Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
[Crossref] [PubMed]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Juodawlkis, P. W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

Kang, H. X.

H. X. Kang, H. T. Zhang, and D. S. Wang, “Thermal-induced refractive-index planar waveguide laser,” Appl. Phys. Lett. 95(18), 181102 (2009).
[Crossref]

Kar, A. K.

Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Khanlary, M.

M. Khanlary, D. E. Hole, and P. D. Townsend, “Ion beam luminescence of Nd:YAG,” Nucl. Instrum. Meth. B. 227(3), 379–384 (2005).
[Crossref]

Knight, J. C.

Kostamovaara, J. T.

E. A. Avrutin, B. S. Ryvkin, J. T. Kostamovaara, and D. V. Kuksenkov, “Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates,” Semicond. Sci. Technol. 30(5), 055006 (2015).
[Crossref]

Kou, H. M.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Krasheninnikov, A. V.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Kretschmer, S.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Kuksenkov, D. V.

E. A. Avrutin, B. S. Ryvkin, J. T. Kostamovaara, and D. V. Kuksenkov, “Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates,” Semicond. Sci. Technol. 30(5), 055006 (2015).
[Crossref]

Large, A. C.

Li, J.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Li, X. S.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Liao, Q.

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Lin, J.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Liu, B. L.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Liu, F. Q.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

Liu, H. L.

C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
[Crossref]

H. L. Liu, J. R. Vázquez de Aldana, B. del Rosal Rabes, and F. Chen, “Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription,” Opt. Mater. 39, 125–129 (2015).
[Crossref]

Liu, J.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Liu, X. B.

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Liu, Y. R.

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Loh, W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

Lopez, R.

R. Villagomez, R. Lopez, R. Cortes, and V. Coello, “Integral plug-in RF module in a CO2 hybrid-waveguide laser: Its performance and overall evaluation,” Optik (Stuttg.) 118(3), 110–114 (2007).
[Crossref]

Lu, Q. M.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Ma, H. J.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Ma, L.

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Macdonald, J.

Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

Macdonald, J. R.

Mazzera, M.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Minkovich, V. P.

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

Missaggia, L. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

Monzon-Hernandez, D.

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

Mueller, S.

T. Calmano and S. Mueller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Top. Quant. 21(1), 1602213 (2015).

Narusawa, T.

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-laser O. 105(4), 871–875 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-Lasers O. 105(4), 871–875 (2011).
[Crossref]

Nie, R.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Nie, W. J.

O’Donnell, F. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

Osellame, R.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Paschke, A.-G.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Pelenc, D.

Petermann, K.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
[Crossref]

Plant, J. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Qiu, F.

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-laser O. 105(4), 871–875 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-Lasers O. 105(4), 871–875 (2011).
[Crossref]

Qu, H. Y.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Rabes, B. R.

Reekie, L.

L. Dong, L. Reekie, and J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33(22), 1897–1898 (1997).
[Crossref]

Russell, P. S.

Ryvkin, B. S.

E. A. Avrutin, B. S. Ryvkin, J. T. Kostamovaara, and D. V. Kuksenkov, “Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates,” Semicond. Sci. Technol. 30(5), 055006 (2015).
[Crossref]

Schepler, K. L.

Seri, A.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Shang, Z.

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Shepherd, D. P.

Shi, Y.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Siebenmorgen, J.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
[Crossref]

Starodumov, A. N.

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

Tan, Y.

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
[Crossref]

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref] [PubMed]

Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
[Crossref] [PubMed]

Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Thomson, R. R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

Townsend, P. D.

M. Khanlary, D. E. Hole, and P. D. Townsend, “Ion beam luminescence of Nd:YAG,” Nucl. Instrum. Meth. B. 227(3), 379–384 (2005).
[Crossref]

Tropper, A. C.

Vázquez de Aldana, J. R.

C. Cheng, H. L. Liu, Z. Shang, W. J. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367 (2016).
[Crossref]

H. L. Liu, J. R. Vázquez de Aldana, B. del Rosal Rabes, and F. Chen, “Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription,” Opt. Mater. 39, 125–129 (2015).
[Crossref]

Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
[Crossref] [PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Villagomez, R.

R. Villagomez, R. Lopez, R. Cortes, and V. Coello, “Integral plug-in RF module in a CO2 hybrid-waveguide laser: Its performance and overall evaluation,” Optik (Stuttg.) 118(3), 110–114 (2007).
[Crossref]

Wang, D. S.

H. X. Kang, H. T. Zhang, and D. S. Wang, “Thermal-induced refractive-index planar waveguide laser,” Appl. Phys. Lett. 95(18), 181102 (2009).
[Crossref]

Wang, J. T.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Wang, K. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, L. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, Z.

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Wu, R.

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Xin, X.

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Yagi, H.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Zhang, C.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

Zhang, H.

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Zhang, H. T.

H. X. Kang, H. T. Zhang, and D. S. Wang, “Thermal-induced refractive-index planar waveguide laser,” Appl. Phys. Lett. 95(18), 181102 (2009).
[Crossref]

Zhao, M. W.

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Zhong, N.

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Zhou, S.

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref] [PubMed]

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Zhou, Z. W.

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

ACS Photonics (1)

Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, “Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications,” ACS Photonics 4(6), 1531–1538 (2017).
[Crossref]

Appl. Phys. B (1)

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Appl. Phys. B-laser O. (1)

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-laser O. 105(4), 871–875 (2011).
[Crossref]

Appl. Phys. B-Lasers O. (2)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laserwith 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B-Lasers O. 100(1), 131–135 (2010).
[Crossref]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAGceramic waveguides produced by carbon ion implantation,” Appl. Phys. B-lasers O. 103(4), 837–840 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B-Lasers O. 105(4), 871–875 (2011).
[Crossref]

Appl. Phys. Lett. (2)

Y. Tan, R. Y. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated grapheme,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

H. X. Kang, H. T. Zhang, and D. S. Wang, “Thermal-induced refractive-index planar waveguide laser,” Appl. Phys. Lett. 95(18), 181102 (2009).
[Crossref]

Biosens. Bioelectron. (1)

X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosens. Bioelectron. 91, 623–628 (2017).
[Crossref] [PubMed]

Electron. Lett. (1)

L. Dong, L. Reekie, and J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33(22), 1897–1898 (1997).
[Crossref]

IEEE J. Top. Quant. (1)

T. Calmano and S. Mueller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Top. Quant. 21(1), 1602213 (2015).

IEEE Photonic Tech. Lett. (1)

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL),” IEEE Photonic Tech. Lett. 23(14), 974–976 (2011).
[Crossref]

IEEE Photonic. Techl. Lett. (1)

N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription,” IEEE Photonic. Techl. Lett. 20(1–4), 126–128 (2008).
[Crossref]

J. Appl. Phys. (1)

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nano Lett. (1)

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-Dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Nucl. Instrum. Meth. B. (1)

M. Khanlary, D. E. Hole, and P. D. Townsend, “Ion beam luminescence of Nd:YAG,” Nucl. Instrum. Meth. B. 227(3), 379–384 (2005).
[Crossref]

Opt. Commun. (1)

D. Monzon-Hernandez, A. N. Starodumov, A. Goitia, V. N. Filippov, V. P. Minkovich, and P. Gavrilovic, “Stress distribution and birefringence measurement in double-clad fiber,” Opt. Commun. 170(4–6), 241–246 (1999).
[Crossref]

Opt. Express (2)

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref] [PubMed]

Y. C. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 2900–2908 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (2)

H. L. Liu, J. R. Vázquez de Aldana, B. del Rosal Rabes, and F. Chen, “Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription,” Opt. Mater. 39, 125–129 (2015).
[Crossref]

L. Ge, J. Lin, J. Li, H. Y. Qu, J. T. Wang, J. Liu, J. W. Dai, Z. W. Zhou, B. L. Liu, H. M. Kou, and Y. Shi, “Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics,” Opt. Mater. 60, 221–229 (2016).
[Crossref]

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

R. Villagomez, R. Lopez, R. Cortes, and V. Coello, “Integral plug-in RF module in a CO2 hybrid-waveguide laser: Its performance and overall evaluation,” Optik (Stuttg.) 118(3), 110–114 (2007).
[Crossref]

Phys. Rev. Appl. (1)

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Semicond. Sci. Technol. (1)

E. A. Avrutin, B. S. Ryvkin, J. T. Kostamovaara, and D. V. Kuksenkov, “Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates,” Semicond. Sci. Technol. 30(5), 055006 (2015).
[Crossref]

Other (2)

RSoft Design Group, Computer software BandSLOVE, http://www.rsoftdesign.com

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale, doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic process of ultrafast laser writing (Step1) and ion irradiation (Step2) for the cladding-like waveguide. (b) The microscope image of the sample cross section and corresponding refractive index as a function with the depth of the distance from the sample surface.
Fig. 2
Fig. 2 Simulated near-field intensity distribution of the cladding-like waveguide at 1064nm along s-polarization (a) and p-polarization (b). Measured near-field intensity distribution of the cladding-like waveguide at 1064nm along s-polarization (c) and p-polarization (d). Simulated near-field intensity distribution of the monolayer waveguide by ultrafast laser writing along s-polarization (e) and p-polarization (f) and by Carbon ion irradiation along s-polarization (g) and p-polarization (h).
Fig. 3
Fig. 3 (a) Laser emission spectrum from the Nd:YAG cladding-like waveguide. The inset graphs display the laser mode of the laser from the waveguide cores at both s- and p- polarization at the lasing wavelength of ~1064 nm. (b) The CW waveguide laser output powers at 1064 nm as a function of the absorbed light power at 808 nm. The dark rectangular and red rounded symbols stand for the data along s- and p- polarization, respectively. The solid lines represent the linear fit of the experimental data.
Fig. 4
Fig. 4 (a) The image of coating WS2, (b) low magnification TEM image, and (c) high magnification TEM image. (d) The exhibition of pulse trains at s-polarized input power of 152mW (up), at 84mW (down). (e) The power of the output laser as a function of pump power, and (f) the repetition rate and the pulse duration of the pulsed laser

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n(z)=a n 1 (z)+b n 2 (z)

Metrics