Abstract

We report the generation of tunable high-repetition-rate picosecond radiation in the mid-infrared using the new quasi-phase-matched nonlinear material of orientation-patterned gallium phosphide (OP-GaP). The source is realized by single-pass difference-frequency-generation (DFG) between the output signal of a picosecond optical parametric oscillator (OPO) tunable across 1609-1637 nm with input pump pulses at 1064 nm in OP-GaP, resulting in tunable radiation across 3040-3132 nm. Using a 40-mm-long crystal, we have generated up to 57 mW of DFG average power at ~80 MHz repetition rate for a pump power of 5 W and signal power of 0.9 W, with >30 mW over >50% of the tuning range. The DFG source exhibits a passive power stability better than 3.2% rms over 1 hour in good spatial beam quality. To the best of our knowledge, this is the first picosecond frequency conversion source based on OP-GaP.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

7 August 2017: A typographical correction was made to the author listing.


OSA Recommended Articles
Performance characterization of mid-infrared difference-frequency-generation in orientation-patterned gallium phosphide

Junxiong Wei, S. Chaitanya Kumar, Hanyu Ye, P. G. Schunemann, and M. Ebrahim-Zadeh
Opt. Mater. Express 8(3) 555-567 (2018)

Nanosecond difference-frequency generation in orientation-patterned gallium phosphide

Junxiong Wei, S. Chaitanya Kumar, Hanyu Ye, Kavita Devi, Peter G. Schunemann, and M. Ebrahim-Zadeh
Opt. Lett. 42(11) 2193-2196 (2017)

Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals

Giacomo Insero, Cecilia Clivati, Davide D’Ambrosio, Paolo De Natale, Gabriele Santambrogio, Peter G. Schunemann, Jean-Jacques Zondy, and Simone Borri
Opt. Lett. 41(21) 5114-5117 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Tokmakoff, B. Sauter, and M. D. Fayer, “Temperature-dependent vibrational relaxation in polyatomic liquids: Picosecond infrared pump–probe experiments,” J. Chem. Phys. 100(12), 9035–9043 (1994).
    [Crossref]
  2. M. Mathez, P. J. Rodrigo, P. Tidemand-Lichtenberg, and C. Pedersen, “Upconversion imaging using short-wave infrared picosecond pulses,” Opt. Lett. 42(3), 579–582 (2017).
    [Crossref] [PubMed]
  3. M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-Fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quant. 20(5), 624–642 (2014).
    [Crossref]
  4. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
    [Crossref]
  5. S. Chaitanya Kumar, P. G. Schunemann, K. T. Zawilski, and M. Ebrahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” J. Opt. Soc. Am. B 33(11), D44–D56 (2016).
    [Crossref]
  6. S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 μm,” Opt. Lett. 36(16), 3236–3238 (2011).
    [Crossref] [PubMed]
  7. S. Chaitanya Kumar, A. Esteban-Martin, A. Santana, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2,” Opt. Lett. 41(14), 3355–3358 (2016).
    [Crossref] [PubMed]
  8. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
    [Crossref] [PubMed]
  9. P. G. Schunemann, L. A. Pomeranz, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1064-nm-pumped mid-infrared optical parametric oscillator based on orientation-patterned gallium phosphide (OP-GaP),” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3O.4.
  10. P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “First OPO based on orientation-patterned gallium phosphide (OP-GaP),” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3O.1.
    [Crossref]
  11. J. Wei, S. Chaitanya Kumar, H. Ye, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Nanosecond difference-frequency generation in orientation-patterned gallium phosphide,” Opt. Lett. 42(11), 2193–2196 (2017).
    [Crossref] [PubMed]
  12. S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide,” Opt. Mater. Express 5(12), 2911–2923 (2015).
    [Crossref]
  13. G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J. J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
    [Crossref] [PubMed]
  14. S. C. Kumar and M. Ebrahim-Zadeh, “High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT,” Opt. Express 19(27), 26660–26665 (2011).
    [Crossref] [PubMed]
  15. L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
    [Crossref]

2017 (2)

2016 (5)

2015 (2)

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide,” Opt. Mater. Express 5(12), 2911–2923 (2015).
[Crossref]

2014 (1)

M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-Fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quant. 20(5), 624–642 (2014).
[Crossref]

2011 (2)

1994 (1)

A. Tokmakoff, B. Sauter, and M. D. Fayer, “Temperature-dependent vibrational relaxation in polyatomic liquids: Picosecond infrared pump–probe experiments,” J. Chem. Phys. 100(12), 9035–9043 (1994).
[Crossref]

Agnesi, A.

Barnes, J. O.

Borri, S.

Budni, P. A.

Chaitanya Kumar, S.

Clivati, C.

Creeden, D. J.

D’Ambrosio, D.

Dallocchio, P.

Devi, K.

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Fayer, M. D.

A. Tokmakoff, B. Sauter, and M. D. Fayer, “Temperature-dependent vibrational relaxation in polyatomic liquids: Picosecond infrared pump–probe experiments,” J. Chem. Phys. 100(12), 9035–9043 (1994).
[Crossref]

Guha, S.

Insero, G.

Kumar, S. C.

Magarrell, D. J.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Maidment, L.

Mathez, M.

McCarthy, J. C.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Natale, P.

Pedersen, C.

Pirzio, F.

Pomeranz, L. A.

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Reali, G.

Reid, D. T.

Rodrigo, P. J.

Santambrogio, G.

Santana, A.

Sauter, B.

A. Tokmakoff, B. Sauter, and M. D. Fayer, “Temperature-dependent vibrational relaxation in polyatomic liquids: Picosecond infrared pump–probe experiments,” J. Chem. Phys. 100(12), 9035–9043 (1994).
[Crossref]

Schunemann, P. G.

J. Wei, S. Chaitanya Kumar, H. Ye, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Nanosecond difference-frequency generation in orientation-patterned gallium phosphide,” Opt. Lett. 42(11), 2193–2196 (2017).
[Crossref] [PubMed]

G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J. J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref] [PubMed]

S. Chaitanya Kumar, P. G. Schunemann, K. T. Zawilski, and M. Ebrahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” J. Opt. Soc. Am. B 33(11), D44–D56 (2016).
[Crossref]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
[Crossref]

S. Chaitanya Kumar, A. Esteban-Martin, A. Santana, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2,” Opt. Lett. 41(14), 3355–3358 (2016).
[Crossref] [PubMed]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
[Crossref] [PubMed]

S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide,” Opt. Mater. Express 5(12), 2911–2923 (2015).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 μm,” Opt. Lett. 36(16), 3236–3238 (2011).
[Crossref] [PubMed]

Tidemand-Lichtenberg, P.

Tokmakoff, A.

A. Tokmakoff, B. Sauter, and M. D. Fayer, “Temperature-dependent vibrational relaxation in polyatomic liquids: Picosecond infrared pump–probe experiments,” J. Chem. Phys. 100(12), 9035–9043 (1994).
[Crossref]

Wei, J.

Ye, H.

Zawilski, K. T.

Zelmon, D. E.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Zondy, J. J.

IEEE J. Sel. Top. Quant. (1)

M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-Fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quant. 20(5), 624–642 (2014).
[Crossref]

J. Chem. Phys. (1)

A. Tokmakoff, B. Sauter, and M. D. Fayer, “Temperature-dependent vibrational relaxation in polyatomic liquids: Picosecond infrared pump–probe experiments,” J. Chem. Phys. 100(12), 9035–9043 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (6)

G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J. J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref] [PubMed]

M. Mathez, P. J. Rodrigo, P. Tidemand-Lichtenberg, and C. Pedersen, “Upconversion imaging using short-wave infrared picosecond pulses,” Opt. Lett. 42(3), 579–582 (2017).
[Crossref] [PubMed]

J. Wei, S. Chaitanya Kumar, H. Ye, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Nanosecond difference-frequency generation in orientation-patterned gallium phosphide,” Opt. Lett. 42(11), 2193–2196 (2017).
[Crossref] [PubMed]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 μm,” Opt. Lett. 36(16), 3236–3238 (2011).
[Crossref] [PubMed]

S. Chaitanya Kumar, A. Esteban-Martin, A. Santana, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2,” Opt. Lett. 41(14), 3355–3358 (2016).
[Crossref] [PubMed]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Proc. SPIE (1)

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Other (2)

P. G. Schunemann, L. A. Pomeranz, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1064-nm-pumped mid-infrared optical parametric oscillator based on orientation-patterned gallium phosphide (OP-GaP),” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3O.4.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “First OPO based on orientation-patterned gallium phosphide (OP-GaP),” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3O.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experimental setup for the picosecond DFG in OP-GaP. FI: Faraday isolator, λ/2: Half-wave plate, PBS: Polarizing beam-splitter, Delay: variable delay line, L: Lens, M: Mirrors, F: Filter. Inset: The 40-mm-long OP-GaP crystal used for the DFG experiment, showing parasitic red light due to non-phase-matched sum-frequency-generation between the input pump and signal pulses.
Fig. 2
Fig. 2 (a) Temperature tuning performance of the picosecond DFG source based on OP-GaP. Solid and hollow circles represent the measured DFG and input signal wavelengths, and dashed lines are the theoretical calculations. (b) DFG output power across the tuning range. Inset: (i) pump, and (ii) signal spectra centered at 1064 nm and 1636 nm.
Fig. 3
Fig. 3 DFG power scaling and OP-GaP phase-matching temperature as a function of the pump power at a fixed signal power, (b) Experimentally measured temperature acceptance bandwidth for DFG in the 40-mm-long OP-GaP crystal. Inset: Theoretically calculated DFG temperature acceptance bandwidth for an effective interaction length of 5.5 mm.
Fig. 4
Fig. 4 Long-term power stability of the (a) pump at 1064 nm, (b) signal at 1636 nm, and (c) DFG at 3044 nm recorded over 1 hour.
Fig. 5
Fig. 5 Group velocity mismatch between the pump and signal pulses in the OP-GaP crystal (b) Normalized DFG power as a function of the pump delay.
Fig. 6
Fig. 6 Spatial beam profiles of the (a) pump at 1064 nm, (b) signal at 1636 nm, and (c) DFG at 3044 nm.

Metrics