Abstract

Photoacoustic signal enhancements were observed with a pair of time-delayed femtosecond pulses upon excitation of gold nanosphere colloidal suspension. A systematic experimental investigation of photoacoustic intensity within the delay time, Δt = 0 to 15 ns, was carried out. The results revealed a significant enhancement factor of ∼2 when the pre-pulse energy is 20–30% of the total energy. Pre-pulse and main pulse energy ratios, Ep(1):Es(2), were varied to determine the optimal ratio that yields to maximum photoacoustic signal enhancement. This enhancement was ascribed to the initial stage of thermalization and bubble generation in the nanosecond time scale. Pre-pulse scattering intensity measurements and numerical finite-difference time-domain calculations were performed to reveal dynamics and light field enchancement, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vapor bubble generation around gold nano-particles and its application to damaging of cells

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz
Biomed. Opt. Express 2(2) 291-304 (2011)

Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation

Frances Camille P. Masim, Hao-Li Liu, Matteo Porta, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, Wei-Hung Hsu, and Koji Hatanaka
Opt. Express 24(13) 14781-14792 (2016)

Mechanisms of nanoparticle-mediated photomechanical cell damage

Sara Peeters, Michael Kitz, Stefan Preisser, Antoinette Wetterwald, Barbara Rothen-Rutishauser, George N. Thalmann, Christina Brandenberger, Arthur Bailey, and Martin Frenz
Biomed. Opt. Express 3(3) 435-446 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
    [Crossref]
  2. T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
    [Crossref]
  3. Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
    [Crossref]
  4. S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
    [Crossref]
  5. J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
    [Crossref]
  6. J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
    [Crossref]
  7. T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
    [Crossref]
  8. V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
    [Crossref]
  9. J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
    [Crossref]
  10. J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
    [Crossref]
  11. M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
    [Crossref]
  12. H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
    [Crossref] [PubMed]
  13. C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
    [Crossref] [PubMed]
  14. E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
    [Crossref] [PubMed]
  15. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
    [Crossref]
  16. K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
    [Crossref]
  17. C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
    [Crossref] [PubMed]
  18. A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
    [Crossref]
  19. A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
    [Crossref]
  20. R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
    [Crossref] [PubMed]
  21. R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
    [Crossref]
  22. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
    [Crossref] [PubMed]
  23. T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
    [Crossref]
  24. B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
    [Crossref]
  25. R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).
  26. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [Crossref] [PubMed]
  27. M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
    [Crossref]
  28. Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
    [Crossref]
  29. H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
    [Crossref] [PubMed]
  30. T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
    [Crossref]
  31. M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
    [Crossref]
  32. F. C. P. Masim, M. Porta, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au Nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3, 2184–2190 (2016).
    [Crossref]
  33. F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
    [Crossref] [PubMed]
  34. F. C. P. Masim, W.-H. Hsu, C. H. Tsai, H.-L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(15), 17050–17059 (2016).
    [Crossref] [PubMed]
  35. Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
    [Crossref]
  36. A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).
  37. G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
    [Crossref]
  38. V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
    [Crossref]
  39. V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
    [Crossref]
  40. J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
    [Crossref]
  41. S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
    [Crossref]
  42. P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
    [Crossref]
  43. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
    [Crossref]
  44. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
    [Crossref]
  45. N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
    [Crossref] [PubMed]
  46. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
    [Crossref]
  47. T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
    [Crossref]
  48. E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
    [Crossref]
  49. R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
    [Crossref]
  50. M. Malinauskas, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focused femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
    [Crossref] [PubMed]
  51. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657, (2008).
    [Crossref] [PubMed]

2017 (1)

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

2016 (14)

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

F. C. P. Masim, M. Porta, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au Nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3, 2184–2190 (2016).
[Crossref]

F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref] [PubMed]

F. C. P. Masim, W.-H. Hsu, C. H. Tsai, H.-L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(15), 17050–17059 (2016).
[Crossref] [PubMed]

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

2015 (6)

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

2014 (6)

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

2013 (3)

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

2012 (3)

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

2011 (3)

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

2010 (2)

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

M. Malinauskas, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focused femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[Crossref] [PubMed]

2008 (2)

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657, (2008).
[Crossref] [PubMed]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

2007 (2)

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

2006 (3)

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

2005 (1)

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

2004 (2)

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

2003 (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Aft, R. B.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Anglos, D.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Babushok, V. I.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Baffou, G.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

Balcytis, A.

Bar, I.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Bastus, N. G.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Baumert, T.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Benedetti, P. A.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Boneberg, J.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Borden, M. A.

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

Boulais, E.

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Boutopoulos, C.

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Brixner, T.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Capitelli, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Chance Carter, J.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Chang, J.-H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Chatterjee, S.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Chen, A.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Chen, F.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Chen, Z.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Chiang, W.-Y.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Colstron, B.W.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Comenge, J.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Cristoforetti, G.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Danworaphong, S.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

De Lucia, F. C.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Dell’Aglio, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Deng, J.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Dimler, F.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Ding, D.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Diwakar, P. K.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Dong, G.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Dove, J. D.

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

Du, G.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Emelianov, S.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

Fortin-Deschenes, M.

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Fotakis, C.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Fujita, M.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Fukumura, H.

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Gecevicius, M.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Geortz, D. E.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Gerber, G.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Giacomo, A. De

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Goode, S. R.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Gordon, R. J.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Gotte, N.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Gottfried, J. A.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Guo, J.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Hai, P.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Harilal, S. S.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Hartland, G. V.

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Hasegawa, N.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Hassanein, A.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Hatanaka, K.

Hatef, A.

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Hayashi, T.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Helfield, B. L

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Helfield, B. L.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Homan, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

Hou, X.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Hsu, W.-H.

Hu, M.

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Hu, Z.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Huynh, E.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Ida, T.

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Jarrett, J. W.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Jeon, M.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Jiang, Y.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Jin, M.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Johnson, J. S.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Ju, H.

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Juodkazis, S.

Kelf, T. A.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Kim, C.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Kim, H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Kim, J.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Kim, J.-M.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Knappenberger, K. L.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Kotaidis, V.

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Kumada, T.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Kumar, D.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Kupfer, R.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Lachaine, R.

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Lajoie, P.

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

Larson-Smith, K.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Legnaioli, S.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Leung, B. Y. C.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Li, S.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Lim, D.-K.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Liu, D.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Liu, H. L.

Liu, H.-L.

Lomardo, M.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Lovell, J. F.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Luo, S.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Ma, Z.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Maeda, Y.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Malinauskas, M.

Masim, F. C. P.

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

Masuhara, H.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Matsuda, O.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Matsushima, S.-I.

Matula, T.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

McLaughlan, J. R.

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Mensah, S.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

Metwally, K.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

Meunier, M.

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Michael Angel, S.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Mildner, J.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Misawa, H.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657, (2008).
[Crossref] [PubMed]

Miziolek, A. W.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Moon, H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Munson, C. A.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Muramatsu, M.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Murray, T. W.

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Nakajima, T.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Nguyen, M. T.

Nicolas, G.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Nishijima, Y.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Nishikino, M.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Novack, D. V.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Nuernberger, P.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

O’Donell, M.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Oh, J.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Ono, H.

Otobe, T.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Otsuka, M.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Ou, Y.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Palleschi, V.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Pardini, L.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Park, K.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Pascale, O. De

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Pearman, W.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Pelivanov, I.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Penczak, J.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Pender, J.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Perez, C.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Petrova, H.

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Pinon, V.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Plech, A.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

Pleitez, M. A.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Porta, M.

Pozzo, D.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Puntes, V.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Qi, H.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Qiu, J.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Raman, B.

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Rao, B.

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Rioux, D.

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

Rong, H.

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Roy, R. A.

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Sakka, T.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Salvetti, A.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Sarpe, C.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Scaffidi, J.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Selle, R.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Shao, J.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Shen, T.-F.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Siems, A.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Sim, C.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Somekawa, T.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Song, W.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Sui, L.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Sun, T.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Tanaka, Y.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Tognoni, E.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Tomada, M.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Tsai, C. H.

Ueno, L.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Urban, B. E.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

Usman, A.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Vaia, R. A.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Vogt, G.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Wang, L. V.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Wang, R.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Wang, T.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Wang, X.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

F. C. P. Masim, W.-H. Hsu, C. H. Tsai, H.-L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(15), 17050–17059 (2016).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Wang, Y.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Weber, S. A. L.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Wei, C.-W.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Wilson, B. C.

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Wilson, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

Wollenhaupt, M.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Wong, T. T. W.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Wright, O. B.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Wu, Y.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Xia, J.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Yakovlev, V.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

Yang, Q.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Yi, J.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

Yonezawa, T.

Zhang, C.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Zhang, H.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Zhang, H. F.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

Zhang, R.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Zhao, T.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Zheng, G.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Zhou, S.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

ACS Nano (1)

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

ACS Photonics (3)

F. C. P. Masim, M. Porta, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au Nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3, 2184–2190 (2016).
[Crossref]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

Adv. Materials (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Appl. Optics (1)

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Appl. Phy. Lett. (1)

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Appl. Phys. Lett. (3)

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Appl. Sur. Sci. (1)

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Chem. Phy. Lett. (1)

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Int. J. Ther. Sci. (1)

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

J. Biomed. Optics (2)

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

J. Phys. Chem. C (2)

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

J. Phys. Chem. C. (2)

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Jap. J. Appl. Phy. (1)

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Langmuir (1)

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Nano Lett. (1)

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

Nanoscale (1)

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Nat. Comm. (1)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

New Journal of Physics (1)

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Opt. Express (5)

Opt. Laser Tech. (3)

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Opt. Letters (1)

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Optics Comm. (1)

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Phys. Rev. A (1)

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Phys. Rev. B. (1)

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

Proc. of SPIE (1)

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Sci. Advances (1)

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Sci. Reports (1)

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Soft Matter (1)

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

Spectro Acta B. (1)

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Spectro. Act. Part B (1)

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Spectro. Acta. Part B (4)

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Absorption spectrum of Au nanosphere colloidal suspension with a strong characteristic absorption band at ∼520 nm. TEM image of mono-dispersed colloidal suspension of Au nanosphere with a diameter of 20 nm is shown in the background. (b) Schematic diagram of the experimental setup for fs-double-pulsed excitation to Au nanoparticle suspension for photoacoustic detection. Fs-laser pulses: pulse duration t0 = 40 fs, central wavelength λ = 800 nm and pulse energy E = 0.1 mJ at 1 kHz repetition rate were focused inside the glass tube using 10× numerical aperture N A = 0.28 objective lens. The pre-pulse was p-polarized while the main pulse was s-polarized. Distance between the focal spot and transducer was set at 15 mm in all experiments.

Fig. 2
Fig. 2

Photoacoustic intensity as a function of time delay between fs-laser pulses vertically (p-pol.) and horizontally (s-pol.) from Δt = 0 to 15 ns delay. Pulse energy ratio of pre-pulse to the main pulse E p ( 1 ) : E s ( 2 ) in µJ is shown at their approximate maximum signal levels.

Fig. 3
Fig. 3

Pulse energy ratios with the same total fluence as a function of photoacoustic intensity at different time delays. The delay time between the pre-pulse and main pulse was varied from 0, 2, 5, 10 and 15 ns. A total fluence of 100 µJ was used in the experiments. Lines are drawn as eye guides.

Fig. 4
Fig. 4

Pre-pulse scattering intensity at the λ = 600 nm wavelength measured from 0 to 15 ns time delay between the pulses. A supercontinuum white light generated by fs-laser was used as strobe light to perform dark-field imaging and scattering measurements. Two single exponential decays with time constants τ = 2, 17.5 ns are shown as best fits.

Fig. 5
Fig. 5

(a) Schematic representation of the simulation geometry, with 800 nm wavelength light incident along z-axis and is linearly polarized along x-axis. (b) Simulated extinction cross section, σext, spectrum of the 20 nm diameter Au nanoparticle. The arrow marks the wavelength where two-photon absorption has maximum 0.7λex = 560 nm [50]. (c) Evolution of the absolute (|Etotal|2 as well as the |Ex|2 and |Ey|2 component electric field intensity profiles in the x-y plane around the nanoparticle as the bubbles expand. The intensity of the |Ez|2 components is three orders of magnitude lower, hence their plots are omitted.

Metrics