Abstract

Fringe projection 3D microcopy (FP-3DM) plays an increasingly important role in micro manufacturing and measurement. In recent decades, research on FP-3DM has made considerable progress. Nevertheless, some disadvantages arising from the limited depth of field, local specular reflection and occlusion still exist and need to be further addressed. In this paper, a multi-view FP-3DM (MVFP-3DM) is presented. Four imaging branches with the Scheimpflug condition and one vertical projection branch are deployed to establish the system. The system is described with a general imaging model, which is independent of the system configuration. In system calibration, the edge of binary fringe is used to locate the benchmark, which takes advantage of the fact that the edge will keep its position whether it is in focus or out of focus. Furthermore, a group of experiments prove that our proposed MVFP-3DM system can extend measurable range in depth, improve precision in 3D reconstruction and reduce occlusion.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fringe projection 3D microscopy with the general imaging model

Yongkai Yin, Meng Wang, Bruce Z. Gao, Xiaoli Liu, and Xiang Peng
Opt. Express 23(5) 6846-6857 (2015)

Telecentric 3D profilometry based on phase-shifting fringe projection

Dong Li, Chunyang Liu, and Jindong Tian
Opt. Express 22(26) 31826-31835 (2014)

Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system

Tianyang Tao, Qian Chen, Jian Da, Shijie Feng, Yan Hu, and Chao Zuo
Opt. Express 24(18) 20253-20269 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
    [Crossref]
  2. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32(19), 3438–3441 (1993).
    [Crossref] [PubMed]
  3. M. K. Kim, “Principles and techniques of digital holographic microscopy,” PHOTOE, 018005–018050 (2010).
    [Crossref]
  4. K. Leonhardt, U. Droste, and H. J. Tiziani, “Microshape and rough-surface analysis by fringe projection,” Appl. Opt. 33(31), 7477–7488 (1994).
    [Crossref] [PubMed]
  5. M. Khokhlov, A. Fischer, and D. Rittel, “Multi-Scale Stereo-Photogrammetry System for Fractographic Analysis Using Scanning Electron Microscopy,” Exp. Mech. 52(8), 975–991 (2012).
    [Crossref]
  6. R. Leach, Optical Measurement of Surface Topography (Springer-Verlag Berlin Heidelberg, 2011).
  7. Y. Yin, M. Wang, B. Z. Gao, X. Liu, and X. Peng, “Fringe projection 3D microscopy with the general imaging model,” Opt. Express 23(5), 6846–6857 (2015).
    [Crossref] [PubMed]
  8. R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36(12), 3372–3377 (1997).
    [Crossref]
  9. C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41(28), 5896–5904 (2002).
    [Crossref] [PubMed]
  10. K. P. Proll, J. M. Nivet, K. Korner, and H. J. Tiziani, “Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays,” Appl. Opt. 42(10), 1773–1778 (2003).
    [Crossref] [PubMed]
  11. A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik - International Journal for Light and Electron Optics 124(21), 5052–5056 (2013).
    [Crossref]
  12. Y. Q. Yu, S. J. Huang, Z. H. Zhang, F. Gao, and X. Q. Jiang, “The research of 3D small-field imaging system based on fringe projection technique,” International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors 9297, 8 (2014).
  13. C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
    [Crossref]
  14. C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
    [Crossref]
  15. J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” in 2013), 87594U–87594U–87599.
    [Crossref]
  16. Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
    [Crossref]
  17. T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Multiple-view Shape and Deformation Measurement by Combining Fringe Projection and Digital Image Correlation,” Strain 48(3), 256–266 (2012).
    [Crossref]
  18. M. Weinmann, C. Schwartz, R. Ruiters, and R. Klein, “A Multi-camera, Multi-projector Super-Resolution Framework for Structured Light,” in 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT),2011International Conference on, 2011), 397–404.
    [Crossref]
  19. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).
  20. Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
    [Crossref]
  21. D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22(26), 31826–31835 (2014).
    [Crossref] [PubMed]
  22. B. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express 23(20), 25795–25803 (2015).
    [Crossref] [PubMed]
  23. L. Rao, F. Da, W. Kong, and H. Huang, “Flexible calibration method for telecentric fringe projection profilometry systems,” Opt. Express 24(2), 1222–1237 (2016).
    [Crossref] [PubMed]
  24. K. Haskamp, M. Kästner, and E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” Proc. SPIE 8082, 80821B (2011).
    [Crossref]
  25. O. Albers, A. Poesch, and E. Reithmeier, “Flexible calibration and measurement strategy for a multi-sensor fringe projection unit,” Opt. Express 23(23), 29592–29607 (2015).
    [Crossref] [PubMed]
  26. J. Peng, M. Wang, D. Deng, X. Liu, Y. Yin, and X. Peng, “Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens,” Appl. Opt. 54(34), 10055–10062 (2015).
    [Crossref] [PubMed]
  27. T. Bothe, W. Li, M. Schulte, C. von Kopylow, R. B. Bergmann, and W. P. O. Jüptner, “Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology,” Appl. Opt. 49(30), 5851–5860 (2010).
    [Crossref] [PubMed]
  28. P. Sturm and S. Ramalingam, “A generic concept for camera calibration,” Lect. Notes Comput. Sci. 3022, 1–13 (2004).
    [Crossref]
  29. M. D. Grossberg and S. K. Nayar, “A general imaging model and a method for finding its parameters,” in Computer Vision,2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2001), 108–115 vol.102.
    [Crossref]
  30. S. Ramalingam, P. Sturm, and S. K. Lodha, “Towards complete generic camera calibration,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR 2005) (Institute of Electrical and Electronics Engineers Computer Society, 2005), 1093–1098.
  31. H. Ha, Y. Bok, K. Joo, J. Jung, and I. S. Kweon, “Accurate Camera Calibration Robust to Defocus Using a Smartphone,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015), 828–836.
    [Crossref]

2016 (2)

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

L. Rao, F. Da, W. Kong, and H. Huang, “Flexible calibration method for telecentric fringe projection profilometry systems,” Opt. Express 24(2), 1222–1237 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (2)

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22(26), 31826–31835 (2014).
[Crossref] [PubMed]

2013 (1)

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik - International Journal for Light and Electron Optics 124(21), 5052–5056 (2013).
[Crossref]

2012 (2)

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Multiple-view Shape and Deformation Measurement by Combining Fringe Projection and Digital Image Correlation,” Strain 48(3), 256–266 (2012).
[Crossref]

M. Khokhlov, A. Fischer, and D. Rittel, “Multi-Scale Stereo-Photogrammetry System for Fractographic Analysis Using Scanning Electron Microscopy,” Exp. Mech. 52(8), 975–991 (2012).
[Crossref]

2011 (1)

K. Haskamp, M. Kästner, and E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” Proc. SPIE 8082, 80821B (2011).
[Crossref]

2010 (1)

2004 (1)

P. Sturm and S. Ramalingam, “A generic concept for camera calibration,” Lect. Notes Comput. Sci. 3022, 1–13 (2004).
[Crossref]

2003 (1)

2002 (2)

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41(28), 5896–5904 (2002).
[Crossref] [PubMed]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

2001 (1)

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
[Crossref]

1997 (1)

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36(12), 3372–3377 (1997).
[Crossref]

1994 (1)

1993 (1)

1984 (1)

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Albers, O.

Bergmann, R. B.

Bhushan, B.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Bok, Y.

H. Ha, Y. Bok, K. Joo, J. Jung, and I. S. Kweon, “Accurate Camera Calibration Robust to Defocus Using a Smartphone,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015), 828–836.
[Crossref]

Bothe, T.

Burguete, R. L.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Multiple-view Shape and Deformation Measurement by Combining Fringe Projection and Digital Image Correlation,” Strain 48(3), 256–266 (2012).
[Crossref]

Caber, P. J.

Chen, X.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Chen, Y.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Chen, Z.

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

Chiang, F.-P.

Coggrave, C. R.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Multiple-view Shape and Deformation Measurement by Combining Fringe Projection and Digital Image Correlation,” Strain 48(3), 256–266 (2012).
[Crossref]

Da, F.

Deng, D.

Droste, U.

Fischer, A.

M. Khokhlov, A. Fischer, and D. Rittel, “Multi-Scale Stereo-Photogrammetry System for Fractographic Analysis Using Scanning Electron Microscopy,” Exp. Mech. 52(8), 975–991 (2012).
[Crossref]

Fleischer, M.

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36(12), 3372–3377 (1997).
[Crossref]

Gao, B. Z.

Gao, J.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

George, O. E.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Ha, H.

H. Ha, Y. Bok, K. Joo, J. Jung, and I. S. Kweon, “Accurate Camera Calibration Robust to Defocus Using a Smartphone,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015), 828–836.
[Crossref]

Haskamp, K.

K. Haskamp, M. Kästner, and E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” Proc. SPIE 8082, 80821B (2011).
[Crossref]

He, X. Y.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
[Crossref]

Huang, H.

Huang, P. S.

Huntley, J. M.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Multiple-view Shape and Deformation Measurement by Combining Fringe Projection and Digital Image Correlation,” Strain 48(3), 256–266 (2012).
[Crossref]

Joo, K.

H. Ha, Y. Bok, K. Joo, J. Jung, and I. S. Kweon, “Accurate Camera Calibration Robust to Defocus Using a Smartphone,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015), 828–836.
[Crossref]

Jung, J.

H. Ha, Y. Bok, K. Joo, J. Jung, and I. S. Kweon, “Accurate Camera Calibration Robust to Defocus Using a Smartphone,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015), 828–836.
[Crossref]

Jüptner, W. P. O.

Kang, X.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Kästner, M.

K. Haskamp, M. Kästner, and E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” Proc. SPIE 8082, 80821B (2011).
[Crossref]

Khokhlov, M.

M. Khokhlov, A. Fischer, and D. Rittel, “Multi-Scale Stereo-Photogrammetry System for Fractographic Analysis Using Scanning Electron Microscopy,” Exp. Mech. 52(8), 975–991 (2012).
[Crossref]

Koliopoulos, C. L.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Kong, W.

Korner, K.

Körner, K.

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik - International Journal for Light and Electron Optics 124(21), 5052–5056 (2013).
[Crossref]

Kweon, I. S.

H. Ha, Y. Bok, K. Joo, J. Jung, and I. S. Kweon, “Accurate Camera Calibration Robust to Defocus Using a Smartphone,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015), 828–836.
[Crossref]

Leonhardt, K.

Li, A.

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik - International Journal for Light and Electron Optics 124(21), 5052–5056 (2013).
[Crossref]

Li, B.

Li, D.

Li, W.

Liao, H.

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

Lin, H.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Liu, C.

Liu, X.

Mei, Q.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Nguyen, T. N.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Multiple-view Shape and Deformation Measurement by Combining Fringe Projection and Digital Image Correlation,” Strain 48(3), 256–266 (2012).
[Crossref]

Nivet, J. M.

Osten, W.

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik - International Journal for Light and Electron Optics 124(21), 5052–5056 (2013).
[Crossref]

Peng, J.

Peng, X.

Poesch, A.

Proll, K. P.

Quan, C.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
[Crossref]

Ramalingam, S.

P. Sturm and S. Ramalingam, “A generic concept for camera calibration,” Lect. Notes Comput. Sci. 3022, 1–13 (2004).
[Crossref]

Rao, L.

Reithmeier, E.

O. Albers, A. Poesch, and E. Reithmeier, “Flexible calibration and measurement strategy for a multi-sensor fringe projection unit,” Opt. Express 23(23), 29592–29607 (2015).
[Crossref] [PubMed]

K. Haskamp, M. Kästner, and E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” Proc. SPIE 8082, 80821B (2011).
[Crossref]

Rittel, D.

M. Khokhlov, A. Fischer, and D. Rittel, “Multi-Scale Stereo-Photogrammetry System for Fractographic Analysis Using Scanning Electron Microscopy,” Exp. Mech. 52(8), 975–991 (2012).
[Crossref]

Schulte, M.

Shang, H. M.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
[Crossref]

Sturm, P.

P. Sturm and S. Ramalingam, “A generic concept for camera calibration,” Lect. Notes Comput. Sci. 3022, 1–13 (2004).
[Crossref]

Tay, C. J.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
[Crossref]

Tian, J.

Tiziani, H. J.

von Kopylow, C.

Wang, C. F.

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
[Crossref]

Wang, M.

Wang, W.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Windecker, R.

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36(12), 3372–3377 (1997).
[Crossref]

Wyant, J. C.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Yin, Y.

Yunbo, H.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Zhang, C.

Zhang, G.

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Zhang, S.

Zhang, X.

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

Zhao, Q.

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik - International Journal for Light and Electron Optics 124(21), 5052–5056 (2013).
[Crossref]

Appl. Opt. (6)

ASLE Trans. (1)

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Exp. Mech. (1)

M. Khokhlov, A. Fischer, and D. Rittel, “Multi-Scale Stereo-Photogrammetry System for Fractographic Analysis Using Scanning Electron Microscopy,” Exp. Mech. 52(8), 975–991 (2012).
[Crossref]

Lect. Notes Comput. Sci. (1)

P. Sturm and S. Ramalingam, “A generic concept for camera calibration,” Lect. Notes Comput. Sci. 3022, 1–13 (2004).
[Crossref]

Opt. Commun. (1)

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189(1-3), 21–29 (2001).
[Crossref]

Opt. Eng. (1)

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36(12), 3372–3377 (1997).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Opt. Lasers Eng. (2)

Q. Mei, J. Gao, H. Lin, Y. Chen, H. Yunbo, W. Wang, G. Zhang, and X. Chen, “Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition,” Opt. Lasers Eng. 86, 83–91 (2016).
[Crossref]

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

Optik - International Journal for Light and Electron Optics (1)

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik - International Journal for Light and Electron Optics 124(21), 5052–5056 (2013).
[Crossref]

Proc. SPIE (1)

K. Haskamp, M. Kästner, and E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” Proc. SPIE 8082, 80821B (2011).
[Crossref]

Strain (1)

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Multiple-view Shape and Deformation Measurement by Combining Fringe Projection and Digital Image Correlation,” Strain 48(3), 256–266 (2012).
[Crossref]

Other (9)

M. Weinmann, C. Schwartz, R. Ruiters, and R. Klein, “A Multi-camera, Multi-projector Super-Resolution Framework for Structured Light,” in 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT),2011International Conference on, 2011), 397–404.
[Crossref]

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).

M. D. Grossberg and S. K. Nayar, “A general imaging model and a method for finding its parameters,” in Computer Vision,2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2001), 108–115 vol.102.
[Crossref]

S. Ramalingam, P. Sturm, and S. K. Lodha, “Towards complete generic camera calibration,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR 2005) (Institute of Electrical and Electronics Engineers Computer Society, 2005), 1093–1098.

H. Ha, Y. Bok, K. Joo, J. Jung, and I. S. Kweon, “Accurate Camera Calibration Robust to Defocus Using a Smartphone,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015), 828–836.
[Crossref]

Y. Q. Yu, S. J. Huang, Z. H. Zhang, F. Gao, and X. Q. Jiang, “The research of 3D small-field imaging system based on fringe projection technique,” International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors 9297, 8 (2014).

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” in 2013), 87594U–87594U–87599.
[Crossref]

R. Leach, Optical Measurement of Surface Topography (Springer-Verlag Berlin Heidelberg, 2011).

M. K. Kim, “Principles and techniques of digital holographic microscopy,” PHOTOE, 018005–018050 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Fringe projection 3D microcopy (FP-3DM) based on binocular stereo vision. (a) The schematic of setup. (b) The common focus area (Marked with red quadrangle).
Fig. 2
Fig. 2 System design based on the Scheimpflug principle.
Fig. 3
Fig. 3 Captured images of a planar dot matrix when the optical axis of LWD lens is not perpendicular to it. (a) With traditional setup. (b) Profile line plot of selected points in (a). (c) With modified setup considering Scheimpflug condition. (d) Profile line plot of selected points in (c).
Fig. 4
Fig. 4 MVFP-3DM system. (a) The schematic design, (b) The photograph of the system.
Fig. 5
Fig. 5 The ray-based general imaging model
Fig. 6
Fig. 6 The calibration target and benchmarks. (a) The micro OLED display chip, (b) The orthogonal binary fringe patterns, (c) The benchmarks (red dots) and edges (white line).
Fig. 7
Fig. 7 The process of extracting benchmarks.
Fig. 8
Fig. 8 Edge extraction from complementary binary fringes. (a) Complementary binary fringes, (b) Curves of the gray value, (c) Extracted skeleton of the edge.
Fig. 9
Fig. 9 Calibration result. The three sets of points with different colors show the 3D position of benchmarks related to three different target poses, and the four lines indicate one of the rays corresponding to the four imaging branches respectively.
Fig. 10
Fig. 10 The experimental results for the specimen with two steps. Each FP-3DM branch (marked with A, B, C and D respectively) has different focal positions. (a) The capture interface of the MVFP-3DM system. (b) The range image from each FP-3DM branch. (c) The integrated range image.
Fig. 11
Fig. 11 Contrast curves of the system. The red line indicates the half of the maximum contrast.
Fig. 12
Fig. 12 Comparative results of 3D reconstruction for the surface of a coin. (a) The coin. (b)-(e) The results of 3D reconstruction derived from the intersection of 2-5 rays respectively. (d)-(i) Fitting error distributions of selected areas from (b)-(e) respectively.
Fig. 13
Fig. 13 The range image of surface mount components. (a), (c), (e) Views from different azimuth angles of the range image from single FP-3DM branch. (b), (d), (f) Views from different azimuth angles of the range image from MVFP-3DM.

Tables (2)

Tables Icon

Table 1 Standard deviation (Std.) of the fitting errors

Tables Icon

Table 2 Measured translation distance on selected points

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ m p I p , m a I a , m b I b , m c I c , m d I d X = ( I i I j ) , φ i u ( m i ) = φ j u ( m j ) a n d φ i v ( m i ) = φ j v ( m j ) , i , j { p , a , b , c , d }
E d g e ( x , y ) = | I ( x , y ) I C ( x , y ) | < α ( I max I min )

Metrics