Abstract

We demonstrate a method to select different layers in a sample using a low coherent gating approach combined with a stable common-path quantitative phase imaging microscopy setup. The depth-filtering technique allows us to suppress the negative effects generated by multiple interference patterns of overlaying optical interfaces in the sample. It maintains the compact and stable common-path setup, while enabling images with a high phase sensitivity and acquisition speed. We use a holographic microscope in reflective geometry with a non-tunable low coherence light source. First results of this technique are shown by imaging the hardware layer of a standard micro-controller through its thinned substrate.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging in digital holographic microscopy

Shan Shan Kou and Colin J. R. Sheppard
Opt. Express 15(21) 13640-13648 (2007)

Automatic full compensation of quantitative phase imaging in off-axis digital holographic microscopy

Carlos Trujillo, Raúl Castañeda, Pablo Piedrahita-Quintero, and Jorge Garcia-Sucerquia
Appl. Opt. 55(36) 10299-10306 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Chapter 3 - quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 133–217.
    [Crossref]
  2. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
    [Crossref] [PubMed]
  3. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [Crossref]
  4. H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52, A97–A101 (2013).
    [Crossref] [PubMed]
  5. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22, 10398–10407 (2014).
    [Crossref] [PubMed]
  6. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [Crossref] [PubMed]
  7. Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
    [Crossref] [PubMed]
  8. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light. Sci. Appl. 1, e30 (2012).
    [Crossref]
  9. N. Siegel and G. Brooker, “Improved axial resolution of finch fluorescence microscopy when combined with spinning disk confocal microscopy,” Opt. Express 22, 22298–22307 (2014).
    [Crossref] [PubMed]
  10. R. Kelner, B. Katz, and J. Rosen, “Optical sectioning using a digital fresnel incoherent-holography-based confocal imaging system,” Optica 1, 70–74 (2014).
    [Crossref] [PubMed]
  11. C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited],” Appl. Opt. 53, G33–G43 (2014).
    [Crossref] [PubMed]
  12. M. Finkeldey, L. Göring, N. Gerhardt, and M. R. Hofmann, “Common-path digital holography microscopy of buried semiconductor specimen,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper JW4A.40.
  13. B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
    [Crossref] [PubMed]
  14. N. Koukourakis, V. Jaedicke, A. Adinda-Ougba, S. Goebel, H. Wiethoff, H. Höpfner, N. C. Gerhardt, and M. R. Hofmann, “Depth-filtered digital holography,” Opt. Express 20, 22636–22648 (2012).
    [Crossref] [PubMed]
  15. V. Jaedicke, S. Goebel, N. Koukourakis, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography,” Opt. Lett. 39, 4160–4163 (2014).
    [Crossref] [PubMed]
  16. YongKeun Park, Wonshik Choi, Zahid Yaqoob, Ramachandra Dasari, Kamran Badizadegan, and Michael S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express,  17, 12285–12292 (2009)
    [Crossref] [PubMed]
  17. Youngwoon Choi, Taeseok Daniel Yang, Kyoung Jin Lee, and Wonshik Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36, 2465–2467 (2011).
    [Crossref] [PubMed]
  18. E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
    [Crossref] [PubMed]
  19. M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
    [Crossref]
  20. C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39, 6162–6165 (2014).
    [Crossref] [PubMed]
  21. F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
    [Crossref]
  22. F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
    [Crossref]
  23. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [Crossref] [PubMed]
  24. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6, 57–119 (2014).
    [Crossref]
  25. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
    [Crossref] [PubMed]
  26. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
    [Crossref]
  27. M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Opt. 50, 6214–6224 (2011).
    [Crossref] [PubMed]
  28. F. Beck, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (John Wiley & Sons, 1998).
  29. J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical fault injection on secure microcontrollers,” in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, 2011), 91–99.
    [Crossref]
  30. M. Schnell, M. J. Perez-Roldan, P. S. Carney, and R. Hillenbrand, “Quantitative confocal phase imaging by synthetic optical holography,” Opt. Express 22, 15267–15276 (2014).
    [Crossref] [PubMed]
  31. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref] [PubMed]
  32. S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56, 123–143 (2015)
    [Crossref]
  33. F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object”, Opt. Express 19, 3862–3869 (2011).
    [Crossref] [PubMed]

2016 (1)

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

2015 (1)

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56, 123–143 (2015)
[Crossref]

2014 (9)

M. Schnell, M. J. Perez-Roldan, P. S. Carney, and R. Hillenbrand, “Quantitative confocal phase imaging by synthetic optical holography,” Opt. Express 22, 15267–15276 (2014).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39, 6162–6165 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6, 57–119 (2014).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

V. Jaedicke, S. Goebel, N. Koukourakis, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography,” Opt. Lett. 39, 4160–4163 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

N. Siegel and G. Brooker, “Improved axial resolution of finch fluorescence microscopy when combined with spinning disk confocal microscopy,” Opt. Express 22, 22298–22307 (2014).
[Crossref] [PubMed]

R. Kelner, B. Katz, and J. Rosen, “Optical sectioning using a digital fresnel incoherent-holography-based confocal imaging system,” Optica 1, 70–74 (2014).
[Crossref] [PubMed]

C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited],” Appl. Opt. 53, G33–G43 (2014).
[Crossref] [PubMed]

2013 (3)

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52, A97–A101 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

2009 (1)

2008 (1)

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
[Crossref]

2006 (2)

2005 (1)

1999 (1)

Adams, D. E.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Adinda-Ougba, A.

Arbabi, A.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light. Sci. Appl. 1, e30 (2012).
[Crossref]

Asundi, A.

Badizadegan, K.

Badizadegan, Kamran

Barman, I.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

Beck, F.

F. Beck, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (John Wiley & Sons, 1998).

Bevilacqua, F.

Bevis, C. S.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Bhaduri, B.

Brooker, G.

Cardenas, N.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

Carney, P. S.

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Choi, C.

Choi, Wonshik

Choi, Youngwoon

Cuche, E.

Dasari, R. R.

Dasari, Ramachandra

Depeursinge, C.

Dingari, N. C.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

Edwards, C.

Feld, M. S.

Feld, Michael S.

Finkeldey, M.

M. Finkeldey, L. Göring, N. Gerhardt, and M. R. Hofmann, “Common-path digital holography microscopy of buried semiconductor specimen,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper JW4A.40.

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
[Crossref]

Ganti, R.

Gardner, D. F.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Gerhardt, N.

F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
[Crossref]

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

M. Finkeldey, L. Göring, N. Gerhardt, and M. R. Hofmann, “Common-path digital holography microscopy of buried semiconductor specimen,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper JW4A.40.

Gerhardt, N. C.

Goddard, L. L.

Goebel, S.

Göring, L.

M. Finkeldey, L. Göring, N. Gerhardt, and M. R. Hofmann, “Common-path digital holography microscopy of buried semiconductor specimen,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper JW4A.40.

Griffin, B. G.

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Heo, J. H.

Hillenbrand, R.

Hofmann, M.

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
[Crossref]

Hofmann, M. R.

Höpfner, H.

Huang, L.

Hwang, S.-W.

Ikeda, T.

Jaedicke, V.

Jang, S.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Joshi, B.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

Jung, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Kapteyn, H. C.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Karl, R. M.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Katz, B.

Kawase, K.

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
[Crossref]

Kelner, R.

Kemao, Q.

Kim, K.

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Kim, M. K.

Kim, Y.

Koukourakis, N.

Lee, K.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Lee, Kyoung Jin

Lee, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Li, R.

Liu, S.

Lo, C.-M.

Mancini, G. F.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Mann, C. J.

McKeown, S. J.

Menarini, F.

J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical fault injection on secure microcontrollers,” in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, 2011), 91–99.
[Crossref]

Mir, M.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Chapter 3 - quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 133–217.
[Crossref]

Mohanty, S.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

Moradi, A.

F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
[Crossref]

Murnane, M. M.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Nguyen, T. H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6, 57–119 (2014).
[Crossref]

Nikawa, K.

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
[Crossref]

Otani, C.

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
[Crossref]

Paar, C.

F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
[Crossref]

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

Pan, F.

Park, H.

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Park, Y.

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

Park, YongKeun

Perez-Roldan, M. J.

Pham, H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6, 57–119 (2014).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

Pham, H. V.

Popescu, G.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6, 57–119 (2014).
[Crossref]

C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39, 6162–6165 (2014).
[Crossref] [PubMed]

C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited],” Appl. Opt. 53, G33–G43 (2014).
[Crossref] [PubMed]

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52, A97–A101 (2013).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light. Sci. Appl. 1, e30 (2012).
[Crossref]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref] [PubMed]

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Chapter 3 - quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 133–217.
[Crossref]

Porter, C. L.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Richter, B.

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

Rogers, J. A.

Rong, L.

Rosen, J.

Sandoghdar, V.

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56, 123–143 (2015)
[Crossref]

Schäpers, M.

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

Schellenberg, F.

F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
[Crossref]

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

Schnell, M.

Shanblatt, E. R.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Shim, H.

Siegel, N.

Soares, J. S.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

Su, X.

Tanksalvala, M. D.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Tonouchi, M.

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
[Crossref]

Van Woudenberg, J. G.

J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical fault injection on secure microcontrollers,” in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, 2011), 91–99.
[Crossref]

Vartanian, V. H.

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Wang, F. J.

Wang, K.

Wang, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Chapter 3 - quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 133–217.
[Crossref]

Weisenburger, S.

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56, 123–143 (2015)
[Crossref]

Welp, H.

Wiethoff, H.

Witteman, M. F.

J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical fault injection on secure microcontrollers,” in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, 2011), 91–99.
[Crossref]

Xiao, W.

Yamashita, M.

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
[Crossref]

Yang, Taeseok Daniel

Yaqoob, Zahid

Yodh, A. G.

Yoon, J.

Yu, L.

Yunker, P. J.

Zhang, Q.

Zhao, M.

Zhou, R.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6, 57–119 (2014).
[Crossref]

C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited],” Appl. Opt. 53, G33–G43 (2014).
[Crossref] [PubMed]

Zhu, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Chapter 3 - quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 133–217.
[Crossref]

Adv. Opt. Photonics (1)

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6, 57–119 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93, 041117 (2008).
[Crossref]

Contemp. Phys. (1)

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56, 123–143 (2015)
[Crossref]

Light. Sci. Appl. (1)

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light. Sci. Appl. 1, e30 (2012).
[Crossref]

Nano Lett. (1)

E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl, M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, “Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision,” Nano Lett. 16, 5444–5450 (2016).
[Crossref] [PubMed]

Opt. Express (8)

C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object”, Opt. Express 19, 3862–3869 (2011).
[Crossref] [PubMed]

M. Schnell, M. J. Perez-Roldan, P. S. Carney, and R. Hillenbrand, “Quantitative confocal phase imaging by synthetic optical holography,” Opt. Express 22, 15267–15276 (2014).
[Crossref] [PubMed]

N. Siegel and G. Brooker, “Improved axial resolution of finch fluorescence microscopy when combined with spinning disk confocal microscopy,” Opt. Express 22, 22298–22307 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

N. Koukourakis, V. Jaedicke, A. Adinda-Ougba, S. Goebel, H. Wiethoff, H. Höpfner, N. C. Gerhardt, and M. R. Hofmann, “Depth-filtered digital holography,” Opt. Express 20, 22636–22648 (2012).
[Crossref] [PubMed]

YongKeun Park, Wonshik Choi, Zahid Yaqoob, Ramachandra Dasari, Kamran Badizadegan, and Michael S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express,  17, 12285–12292 (2009)
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Sci. Rep. (2)

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3, 2822 (2013).
[Crossref] [PubMed]

Sensors (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[Crossref] [PubMed]

Other (7)

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Chapter 3 - quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 133–217.
[Crossref]

M. Finkeldey, L. Göring, N. Gerhardt, and M. R. Hofmann, “Common-path digital holography microscopy of buried semiconductor specimen,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper JW4A.40.

F. Schellenberg, M. Finkeldey, B. Richter, M. Schäpers, N. Gerhardt, M. Hofmann, and C. Paar, “On the complexity reduction of laser fault injection campaigns using obic measurements,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2015), pp. 14–27.
[Crossref]

F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi, and C. Paar, “Large laser spots and fault sensitivity analysis,” in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2016), 203–208.
[Crossref]

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
[Crossref]

F. Beck, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (John Wiley & Sons, 1998).

J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical fault injection on secure microcontrollers,” in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, 2011), 91–99.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Setup of the DHM. DUT (Device Under Test), MO (Microscope Objective), BSC (Beam-Splitter-Cube). M (Mirror), L (Laser), Ln (Lens n),G (Grating), SF (Spatial Filter including a centered pinhole and an aperture at the side), LPF (Long Pass Filter). The rays illustrate the illumination light path.

Fig. 2
Fig. 2

Spectrum of the used laser source, driven below threshold. The output power is approximately 15 mW. Calculated coherence-length based on a Gaussian spectrum is approximately 50 μm.

Fig. 3
Fig. 3

The DUT: ATXMega16A4U. Left: Schematic view of the cross-section. Right: Illustration of the micro-controller on custom test board. On the investigated sample a scratch is visible on the top of the surface of the substrate on a specific area which we will discuss later.

Fig. 4
Fig. 4

Simplified sketch of the setup showing the image path in red and the reference beam path in green. The lens L3 is mounted on a z-translation (axial) stage and the spatial filter on a xy-translation (lateral) stage.

Fig. 5
Fig. 5

Left: The beams of the image light path showing different axial foci’s allowing a confocal like selection. Right: The angle difference between the layers allows a additional spatial selection of the beams in the Fourier domain of the 4f system.

Fig. 6
Fig. 6

Left: Phase image of the test-chart, field of view (FOV) is about 150 μm × 150 μm. The height of the structures is measured to be 170 nm and verified using a second DHM system which measured 175 nm. 1.5 μm structures are clearly resolved (in the red rectangle), 1 μm are barely visible. Right: 3D plot of the highlighted 1.5 μm structures, the bars are 16.5 μm wide.

Fig. 7
Fig. 7

Wide-field image of the buried circuit structure showing the out-of-focus scratch on the top of the substrate. No phase information are measured. The field of view (FOV) is about 200 μm × 200 μm.

Fig. 8
Fig. 8

Left: Amplitude reconstruction propagated to a scratch of the top layer. Middle: Phase reconstruction at the same position. The FOV is about 200 μm × 200 μm. Right: Surface plot of the zoomed area of the phase image, indicated by a red square.

Fig. 9
Fig. 9

Left: Amplitude reconstruction propagated to the buried circuit layer. Middle: Phase reconstruction at the same position. The FOV is about 200 μm × 200 μm. Without optical sectioning only the surface information are provided. Right: Surface plot of the zoomed area of the phase image, indicated by a red square.

Fig. 10
Fig. 10

Left: Amplitude reconstruction propagated to the buried circuit layer using the confocal selection techniques. Middle: Phase reconstruction at the same position. The FOV is about 200 μm × 200 μm. Right: Surface plot of the zoomed area of the phase image, indicated by a black square.

Metrics