Abstract

In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers

Fei Tian, Jouha Min, Jiri Kanka, Xiangzhi Li, Paula T. Hammond, and Henry Du
Opt. Express 23(15) 20132-20142 (2015)

Optically monitored drug delivery patch based on porous silicon and polymer microneedles

Principia Dardano, Alessandro Caliò, Jane Politi, Ilaria Rea, Ivo Rendina, and Luca De Stefano
Biomed. Opt. Express 7(5) 1645-1655 (2016)

Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy

Nana Li, Xuanyuan Wen, Jing Liu, Baoju Wang, Qiuqiang Zhan, and Sailing He
Opt. Mater. Express 6(4) 1161-1171 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
    [Crossref]
  2. E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
    [Crossref] [PubMed]
  3. O. C. Farokhzad and R. Langer, “Impact of Nanotechnology on Drug Delivery,” ACS Nano 3(1), 16–20 (2009).
    [Crossref] [PubMed]
  4. D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
    [Crossref] [PubMed]
  5. F. Tian, J. Min, J. Kanka, X. Li, P. T. Hammond, and H. Du, “Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers,” Opt. Express 23(15), 20132–20142 (2015).
    [Crossref] [PubMed]
  6. R. K. Verma, S. Arora, and S. Garg, “Osmotic pumps in drug delivery,” Crit. Rev. Ther. Drug Carrier Syst. 21(6), 477–520 (2004).
    [Crossref] [PubMed]
  7. A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
    [Crossref] [PubMed]
  8. H. Ai, S. A. Jones, M. M. de Villiers, and Y. M. Lvov, “Nano-encapsulation of furosemide microcrystals for controlled drug release,” J. Control. Release 86(1), 59–68 (2003).
    [Crossref] [PubMed]
  9. Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
    [Crossref]
  10. B. Radt, T. Smith, and F. Caruso, “Optically addressable nanostructured capsules,” Adv. Mater. 16(23-24), 23–24 (2004).
    [Crossref]
  11. F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
    [Crossref] [PubMed]
  12. S. Simovic, D. Losic, and K. Vasilev, “Controlled drug release from porous materials by plasma polymer deposition,” Chem. Commun. (Camb.) 46(8), 1317–1319 (2010).
    [Crossref] [PubMed]
  13. X. Che, P. Deng, and L. Que, “Nanostructured aluminum oxide thin film-based fluorescent sensing: Effects of nanopore size, density and thickness,” Proc. IEEE Sensors Conference, 862–864 (2016).
    [Crossref]
  14. A. Jani, D. Losic, and N. Voelcker, “Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications,” Prog. Mater. Sci. 58(5), 636–704 (2013).
    [Crossref]
  15. T. Zhang, Z. Gong, R. Giorno, and L. Que, “A nanostructured Fabry-Perot interferometer,” Opt. Express 18(19), 20282–20288 (2010).
    [Crossref] [PubMed]
  16. W. C. Cheng, Y. He, A. Y. Chang, and L. Que, “A microfluidic chip for controlled release of drugs from microcapsules,” Biomicrofluidics 7(6), 064102 (2013).
    [Crossref] [PubMed]
  17. Y. He, X. Li, and L. Que, “A transparent nanostructured optical biosensor,” J. Biomed. Nanotechnol. 10(5), 767–774 (2014).
    [Crossref] [PubMed]
  18. H. Yin, X. Li, and L. Que, “Fabrication and characterization of aluminum oxide thin film micropatterns on the glass substrate,” Microelectron. Eng. 128, 66–70 (2014).
    [Crossref]
  19. M. Born and E. Wolf, Principal of Optics (John Wiley & Sons, Inc., 2000).

2015 (1)

2014 (2)

Y. He, X. Li, and L. Que, “A transparent nanostructured optical biosensor,” J. Biomed. Nanotechnol. 10(5), 767–774 (2014).
[Crossref] [PubMed]

H. Yin, X. Li, and L. Que, “Fabrication and characterization of aluminum oxide thin film micropatterns on the glass substrate,” Microelectron. Eng. 128, 66–70 (2014).
[Crossref]

2013 (2)

W. C. Cheng, Y. He, A. Y. Chang, and L. Que, “A microfluidic chip for controlled release of drugs from microcapsules,” Biomicrofluidics 7(6), 064102 (2013).
[Crossref] [PubMed]

A. Jani, D. Losic, and N. Voelcker, “Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications,” Prog. Mater. Sci. 58(5), 636–704 (2013).
[Crossref]

2011 (2)

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

2010 (3)

T. Zhang, Z. Gong, R. Giorno, and L. Que, “A nanostructured Fabry-Perot interferometer,” Opt. Express 18(19), 20282–20288 (2010).
[Crossref] [PubMed]

S. Simovic, D. Losic, and K. Vasilev, “Controlled drug release from porous materials by plasma polymer deposition,” Chem. Commun. (Camb.) 46(8), 1317–1319 (2010).
[Crossref] [PubMed]

A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
[Crossref] [PubMed]

2009 (1)

O. C. Farokhzad and R. Langer, “Impact of Nanotechnology on Drug Delivery,” ACS Nano 3(1), 16–20 (2009).
[Crossref] [PubMed]

2004 (2)

R. K. Verma, S. Arora, and S. Garg, “Osmotic pumps in drug delivery,” Crit. Rev. Ther. Drug Carrier Syst. 21(6), 477–520 (2004).
[Crossref] [PubMed]

B. Radt, T. Smith, and F. Caruso, “Optically addressable nanostructured capsules,” Adv. Mater. 16(23-24), 23–24 (2004).
[Crossref]

2003 (2)

H. Ai, S. A. Jones, M. M. de Villiers, and Y. M. Lvov, “Nano-encapsulation of furosemide microcrystals for controlled drug release,” J. Control. Release 86(1), 59–68 (2003).
[Crossref] [PubMed]

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

2002 (1)

L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
[Crossref]

2001 (1)

Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
[Crossref]

Ai, H.

H. Ai, S. A. Jones, M. M. de Villiers, and Y. M. Lvov, “Nano-encapsulation of furosemide microcrystals for controlled drug release,” J. Control. Release 86(1), 59–68 (2003).
[Crossref] [PubMed]

Andrew, J. S.

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

Antipov, A.

Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
[Crossref]

Arora, S.

R. K. Verma, S. Arora, and S. Garg, “Osmotic pumps in drug delivery,” Crit. Rev. Ther. Drug Carrier Syst. 21(6), 477–520 (2004).
[Crossref] [PubMed]

Bergey, E.

L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
[Crossref]

Caruso, F.

B. Radt, T. Smith, and F. Caruso, “Optically addressable nanostructured capsules,” Adv. Mater. 16(23-24), 23–24 (2004).
[Crossref]

Chang, A. Y.

W. C. Cheng, Y. He, A. Y. Chang, and L. Que, “A microfluidic chip for controlled release of drugs from microcapsules,” Biomicrofluidics 7(6), 064102 (2013).
[Crossref] [PubMed]

Che, X.

X. Che, P. Deng, and L. Que, “Nanostructured aluminum oxide thin film-based fluorescent sensing: Effects of nanopore size, density and thickness,” Proc. IEEE Sensors Conference, 862–864 (2016).
[Crossref]

Cheng, L.

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

Cheng, W. C.

W. C. Cheng, Y. He, A. Y. Chang, and L. Que, “A microfluidic chip for controlled release of drugs from microcapsules,” Biomicrofluidics 7(6), 064102 (2013).
[Crossref] [PubMed]

de Villiers, M. M.

H. Ai, S. A. Jones, M. M. de Villiers, and Y. M. Lvov, “Nano-encapsulation of furosemide microcrystals for controlled drug release,” J. Control. Release 86(1), 59–68 (2003).
[Crossref] [PubMed]

Deng, P.

X. Che, P. Deng, and L. Que, “Nanostructured aluminum oxide thin film-based fluorescent sensing: Effects of nanopore size, density and thickness,” Proc. IEEE Sensors Conference, 862–864 (2016).
[Crossref]

Du, H.

Farokhzad, O. C.

O. C. Farokhzad and R. Langer, “Impact of Nanotechnology on Drug Delivery,” ACS Nano 3(1), 16–20 (2009).
[Crossref] [PubMed]

Freeman, W. R.

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

Garg, S.

R. K. Verma, S. Arora, and S. Garg, “Osmotic pumps in drug delivery,” Crit. Rev. Ther. Drug Carrier Syst. 21(6), 477–520 (2004).
[Crossref] [PubMed]

Giorno, R.

Gong, Z.

Guo, M.

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

Guo, Y.

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

Hammond, P. T.

He, Y.

Y. He, X. Li, and L. Que, “A transparent nanostructured optical biosensor,” J. Biomed. Nanotechnol. 10(5), 767–774 (2014).
[Crossref] [PubMed]

W. C. Cheng, Y. He, A. Y. Chang, and L. Que, “A microfluidic chip for controlled release of drugs from microcapsules,” Biomicrofluidics 7(6), 064102 (2013).
[Crossref] [PubMed]

Jani, A.

A. Jani, D. Losic, and N. Voelcker, “Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications,” Prog. Mater. Sci. 58(5), 636–704 (2013).
[Crossref]

Jones, S. A.

H. Ai, S. A. Jones, M. M. de Villiers, and Y. M. Lvov, “Nano-encapsulation of furosemide microcrystals for controlled drug release,” J. Control. Release 86(1), 59–68 (2003).
[Crossref] [PubMed]

Kanka, J.

Kim, K.

L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
[Crossref]

Langer, R.

O. C. Farokhzad and R. Langer, “Impact of Nanotechnology on Drug Delivery,” ACS Nano 3(1), 16–20 (2009).
[Crossref] [PubMed]

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

LaVan, D. A.

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

Levy, L.

L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
[Crossref]

Li, X.

F. Tian, J. Min, J. Kanka, X. Li, P. T. Hammond, and H. Du, “Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers,” Opt. Express 23(15), 20132–20142 (2015).
[Crossref] [PubMed]

H. Yin, X. Li, and L. Que, “Fabrication and characterization of aluminum oxide thin film micropatterns on the glass substrate,” Microelectron. Eng. 128, 66–70 (2014).
[Crossref]

Y. He, X. Li, and L. Que, “A transparent nanostructured optical biosensor,” J. Biomed. Nanotechnol. 10(5), 767–774 (2014).
[Crossref] [PubMed]

Losic, D.

A. Jani, D. Losic, and N. Voelcker, “Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications,” Prog. Mater. Sci. 58(5), 636–704 (2013).
[Crossref]

S. Simovic, D. Losic, and K. Vasilev, “Controlled drug release from porous materials by plasma polymer deposition,” Chem. Commun. (Camb.) 46(8), 1317–1319 (2010).
[Crossref] [PubMed]

Lvov, Y.

Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
[Crossref]

Lvov, Y. M.

H. Ai, S. A. Jones, M. M. de Villiers, and Y. M. Lvov, “Nano-encapsulation of furosemide microcrystals for controlled drug release,” J. Control. Release 86(1), 59–68 (2003).
[Crossref] [PubMed]

Mamedov, A.

Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
[Crossref]

McGuire, T.

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

Min, J.

Mohwald, H.

Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
[Crossref]

Muhammad, F.

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

Pearson, L.

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

Prasad, P.

L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
[Crossref]

Qi, W.

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

Que, L.

Y. He, X. Li, and L. Que, “A transparent nanostructured optical biosensor,” J. Biomed. Nanotechnol. 10(5), 767–774 (2014).
[Crossref] [PubMed]

H. Yin, X. Li, and L. Que, “Fabrication and characterization of aluminum oxide thin film micropatterns on the glass substrate,” Microelectron. Eng. 128, 66–70 (2014).
[Crossref]

W. C. Cheng, Y. He, A. Y. Chang, and L. Que, “A microfluidic chip for controlled release of drugs from microcapsules,” Biomicrofluidics 7(6), 064102 (2013).
[Crossref] [PubMed]

T. Zhang, Z. Gong, R. Giorno, and L. Que, “A nanostructured Fabry-Perot interferometer,” Opt. Express 18(19), 20282–20288 (2010).
[Crossref] [PubMed]

X. Che, P. Deng, and L. Que, “Nanostructured aluminum oxide thin film-based fluorescent sensing: Effects of nanopore size, density and thickness,” Proc. IEEE Sensors Conference, 862–864 (2016).
[Crossref]

Radt, B.

B. Radt, T. Smith, and F. Caruso, “Optically addressable nanostructured capsules,” Adv. Mater. 16(23-24), 23–24 (2004).
[Crossref]

Sahoo, Y.

L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
[Crossref]

Sailor, M. J.

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

Simovic, S.

S. Simovic, D. Losic, and K. Vasilev, “Controlled drug release from porous materials by plasma polymer deposition,” Chem. Commun. (Camb.) 46(8), 1317–1319 (2010).
[Crossref] [PubMed]

Smith, T.

B. Radt, T. Smith, and F. Caruso, “Optically addressable nanostructured capsules,” Adv. Mater. 16(23-24), 23–24 (2004).
[Crossref]

Sukhorukov, G.

Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
[Crossref]

Sun, F.

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

Tian, F.

Vasilev, K.

S. Simovic, D. Losic, and K. Vasilev, “Controlled drug release from porous materials by plasma polymer deposition,” Chem. Commun. (Camb.) 46(8), 1317–1319 (2010).
[Crossref] [PubMed]

Verma, R. K.

R. K. Verma, S. Arora, and S. Garg, “Osmotic pumps in drug delivery,” Crit. Rev. Ther. Drug Carrier Syst. 21(6), 477–520 (2004).
[Crossref] [PubMed]

Voelcker, N.

A. Jani, D. Losic, and N. Voelcker, “Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications,” Prog. Mater. Sci. 58(5), 636–704 (2013).
[Crossref]

Wang, A.

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

Wu, E. C.

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

Yin, H.

H. Yin, X. Li, and L. Que, “Fabrication and characterization of aluminum oxide thin film micropatterns on the glass substrate,” Microelectron. Eng. 128, 66–70 (2014).
[Crossref]

Zelikin, A. N.

A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
[Crossref] [PubMed]

Zhang, T.

Zhu, G.

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

ACS Nano (2)

A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
[Crossref] [PubMed]

O. C. Farokhzad and R. Langer, “Impact of Nanotechnology on Drug Delivery,” ACS Nano 3(1), 16–20 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Radt, T. Smith, and F. Caruso, “Optically addressable nanostructured capsules,” Adv. Mater. 16(23-24), 23–24 (2004).
[Crossref]

Biomaterials (1)

E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, “Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,” Biomaterials 32(7), 1957–1966 (2011).
[Crossref] [PubMed]

Biomicrofluidics (1)

W. C. Cheng, Y. He, A. Y. Chang, and L. Que, “A microfluidic chip for controlled release of drugs from microcapsules,” Biomicrofluidics 7(6), 064102 (2013).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

S. Simovic, D. Losic, and K. Vasilev, “Controlled drug release from porous materials by plasma polymer deposition,” Chem. Commun. (Camb.) 46(8), 1317–1319 (2010).
[Crossref] [PubMed]

Chem. Mater. (1)

L. Levy, Y. Sahoo, K. Kim, E. Bergey, and P. Prasad, “Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9), 3715–3721 (2002).
[Crossref]

Crit. Rev. Ther. Drug Carrier Syst. (1)

R. K. Verma, S. Arora, and S. Garg, “Osmotic pumps in drug delivery,” Crit. Rev. Ther. Drug Carrier Syst. 21(6), 477–520 (2004).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, “pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids,” J. Am. Chem. Soc. 133(23), 8778–8781 (2011).
[Crossref] [PubMed]

J. Biomed. Nanotechnol. (1)

Y. He, X. Li, and L. Que, “A transparent nanostructured optical biosensor,” J. Biomed. Nanotechnol. 10(5), 767–774 (2014).
[Crossref] [PubMed]

J. Control. Release (1)

H. Ai, S. A. Jones, M. M. de Villiers, and Y. M. Lvov, “Nano-encapsulation of furosemide microcrystals for controlled drug release,” J. Control. Release 86(1), 59–68 (2003).
[Crossref] [PubMed]

Microelectron. Eng. (1)

H. Yin, X. Li, and L. Que, “Fabrication and characterization of aluminum oxide thin film micropatterns on the glass substrate,” Microelectron. Eng. 128, 66–70 (2014).
[Crossref]

Nano Lett. (1)

Y. Lvov, A. Antipov, A. Mamedov, H. Mohwald, and G. Sukhorukov, “Urease encapsulation in nanoorganized microshells,” Nano Lett. 1(3), 125–128 (2001).
[Crossref]

Nat. Biotechnol. (1)

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Prog. Mater. Sci. (1)

A. Jani, D. Losic, and N. Voelcker, “Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications,” Prog. Mater. Sci. 58(5), 636–704 (2013).
[Crossref]

Other (2)

X. Che, P. Deng, and L. Que, “Nanostructured aluminum oxide thin film-based fluorescent sensing: Effects of nanopore size, density and thickness,” Proc. IEEE Sensors Conference, 862–864 (2016).
[Crossref]

M. Born and E. Wolf, Principal of Optics (John Wiley & Sons, Inc., 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Load the drug (GS) to the AAO nanopore-thin film device using LbL nanoassembly process; (b-c) optical micrographs showing the surfaces of the nanopore thin film (b) before and (c) after LbL nanoassembly; (d) release the drug from the device by flowing DI water (not to scale).

Fig. 2
Fig. 2

(a) Setup for optical monitoring of drug loading and release process for a nanopore thin film device; (b) incident light is reflected by the nanopore thin film device (1<n0≤n2, 1<n1≤n2, 1.35<n2<1.58 since the refractive indexes of PAA, CHI and GS are nPAA = 1.442,nCHI = 1.35, nGS = 1.58, respectively, n3 = 1.7, d = 50nm, t = 3µm); (c) reflected light from the AAO nanopore thin film device is interference fringes as the transducing signals.

Fig. 3
Fig. 3

(a) Measured optical signals after each [PAA/GS/PAA/CHI] deposition cycle: clear optical signal peak shift is observed; (b) the shift of wavelength peak, relative to 609 nm, for each cycle of deposition.

Fig. 4
Fig. 4

(a) Measured optical signals from the device after chemical/drug releasing through DI water at 0, 2, 120, 600, 1440, 2880 minutes, resulting in clear peak shift; (b) and the corresponding shifts at different release time.

Fig. 5
Fig. 5

(a) SEM images for AAO devices with nanopore size of ~10 nm and ~50 nm, respectively; (b) measured shift of optical signals for the devices during the LbL loading process; (c) the measured peak shifts after chemical/drug releasing through DI water at different release time.

Fig. 6
Fig. 6

Optical images showing the neuron cells’ (N27 cells pointed by read arrows) growth (spread and divide) on AAO thin film device for 3 days (left to right: day1 to day3, one cell is divided in to two cells, then four cells).

Fig. 7
Fig. 7

(a) photos showing the nanopore thin films peeled off glass substrate are damaged and/or become curly; (b) photos showing nanopore thin film transferred on PDMS-silicone; (c) measured optical signals indicate the nanopore thin film perfectly transferred to PDMS-silicone membrane.

Metrics