Abstract

A two-particle model is proposed which enables the assessment of particle-particle interactions in large, sparse arrays of randomly distributed plasmonic metal nanoparticles of arbitrary geometry in inhomogeneous environments. The two-particle model predicts experimentally observed peak splittings in the extinction cross section spectrum for randomly distributed gold nanocones on a TiO2:Er3+ thin film with average center-to-center spacings of 3–5 diameters. The main physical mechanism responsible is found to be interference between the incident field and the far-field component of the single-particle scattered field which is guided along the film.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications

M. Can Günendi, İrem Tanyeli, Gürsoy B. Akgüç, Alpan Bek, Raşit Turan, and Oğuz Gülseren
Opt. Express 21(15) 18344-18353 (2013)

Optical sensing based on plasmon coupling in nanoparticle arrays

Stefan Enoch, Romain Quidant, and Gonçal Badenes
Opt. Express 12(15) 3422-3427 (2004)

Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles

Ramona Dallapiccola, Ashwin Gopinath, Francesco Stellacci, and Luca Dal Negro
Opt. Express 16(8) 5544-5555 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  2. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
    [Crossref]
  3. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
    [Crossref]
  4. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
    [Crossref]
  5. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere Lithography : Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
    [Crossref]
  6. H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
    [Crossref]
  7. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
    [Crossref]
  8. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
    [Crossref] [PubMed]
  9. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
    [Crossref] [PubMed]
  10. S. Linden, “Magnetic response of metamaterials at 100[thinsp]terahertz,” Science 306, 1351 (2004).
    [Crossref] [PubMed]
  11. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  12. F. J. G. de Abajo, “Microscopy: Plasmons go quantum,” Nature 483, 417–418 (2012).
    [Crossref] [PubMed]
  13. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  14. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
    [Crossref] [PubMed]
  15. M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494 (1997).
    [Crossref]
  16. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6, 178–218 (2012).
    [Crossref]
  17. Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573 (1995).
    [Crossref] [PubMed]
  18. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
    [Crossref]
  19. T. Wriedt, “Using the t-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256–268 (2002).
    [Crossref]
  20. S. Kagami and I. Fukai, “Application of boundary-element method to electromagnetic field problems (short papers),” IEEE Trans. Microwave Theory Tech. 32, 455–461 (1984).
    [Crossref]
  21. Y. Kane, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [Crossref]
  22. J. M. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, 2014).
  23. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional fibonacci arrays of metal nanoparticles,” Opt. Express 16, 5544–5555 (2008).
    [Crossref] [PubMed]
  24. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44, 7532 (2005).
    [Crossref] [PubMed]
  25. S. COMSOL AB, Stockholm, “COMSOL Multiphysics,” (2016).
  26. M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers Plasmon Hybridization in Nanoparticle,” Nano Letters 4, 0–4 (2015).
  27. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
    [Crossref] [PubMed]
  28. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
    [Crossref] [PubMed]
  29. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
    [Crossref] [PubMed]
  30. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
    [Crossref] [PubMed]

2016 (1)

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

2015 (2)

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers Plasmon Hybridization in Nanoparticle,” Nano Letters 4, 0–4 (2015).

2012 (3)

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

F. J. G. de Abajo, “Microscopy: Plasmons go quantum,” Nature 483, 417–418 (2012).
[Crossref] [PubMed]

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6, 178–218 (2012).
[Crossref]

2011 (1)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

2008 (3)

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional fibonacci arrays of metal nanoparticles,” Opt. Express 16, 5544–5555 (2008).
[Crossref] [PubMed]

2005 (4)

E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44, 7532 (2005).
[Crossref] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
[Crossref]

2004 (1)

S. Linden, “Magnetic response of metamaterials at 100[thinsp]terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

2003 (1)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

2002 (2)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
[Crossref]

T. Wriedt, “Using the t-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256–268 (2002).
[Crossref]

2001 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[Crossref] [PubMed]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere Lithography : Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

1999 (1)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

1997 (1)

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494 (1997).
[Crossref]

1996 (1)

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[Crossref]

1995 (1)

1984 (1)

S. Kagami and I. Fukai, “Application of boundary-element method to electromagnetic field problems (short papers),” IEEE Trans. Microwave Theory Tech. 32, 455–461 (1984).
[Crossref]

1966 (1)

Y. Kane, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
[Crossref]

Aubard, J.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

Aussenegg, F. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Balling, P.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
[Crossref]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[Crossref] [PubMed]

Boriskina, S. V.

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6, 178–218 (2012).
[Crossref]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Capretti, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

Centurioni, E.

Christiansen, J.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Dal Negro, L.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6, 178–218 (2012).
[Crossref]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional fibonacci arrays of metal nanoparticles,” Opt. Express 16, 5544–5555 (2008).
[Crossref] [PubMed]

Dallapiccola, R.

de Abajo, F. J. G.

F. J. G. de Abajo, “Microscopy: Plasmons go quantum,” Nature 483, 417–418 (2012).
[Crossref] [PubMed]

Duval, M. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Duyne, R. P. V.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere Lithography : Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Eriksen, E.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[Crossref] [PubMed]

Félidj, N.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

Feng, N.-N.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[Crossref] [PubMed]

Forestiere, C.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

Fukai, I.

S. Kagami and I. Fukai, “Application of boundary-element method to electromagnetic field problems (short papers),” IEEE Trans. Microwave Theory Tech. 32, 455–461 (1984).
[Crossref]

Gao, P.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Gopinath, A.

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional fibonacci arrays of metal nanoparticles,” Opt. Express 16, 5544–5555 (2008).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere Lithography : Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Hohenau, A.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere Lithography : Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Jeppesen, B. R.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Jin, J. M.

J. M. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, 2014).

Johannsen, S. R.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Julsgaard, B.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Kagami, S.

S. Kagami and I. Fukai, “Application of boundary-element method to electromagnetic field problems (short papers),” IEEE Trans. Microwave Theory Tech. 32, 455–461 (1984).
[Crossref]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Kane, Y.

Y. Kane, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Kelly, K. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Krenn, J. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

Lakhotiya, H.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

Larsen, A. N.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Laurent, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

Lazarides, A. A.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Lee, S. Y.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

Lévi, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

Linden, S.

S. Linden, “Magnetic response of metamaterials at 100[thinsp]terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Luo, X.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Luo, Y.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[Crossref]

Madsen, S. P.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
[Crossref]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere Lithography : Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Miano, G.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[Crossref]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
[Crossref]

Nazir, A.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Negro, L. D.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[Crossref] [PubMed]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Pasquale, A. J.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
[Crossref]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
[Crossref]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Pu, M.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Reinhard, B. M.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[Crossref] [PubMed]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
[Crossref]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
[Crossref]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Stellacci, F.

Stockman, M.

M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers Plasmon Hybridization in Nanoparticle,” Nano Letters 4, 0–4 (2015).

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[Crossref] [PubMed]

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494 (1997).
[Crossref]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
[Crossref]

Tamburrino, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Vester-Petersen, J.

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

Wang, C.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Wang, Y.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Wriedt, T.

T. Wriedt, “Using the t-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256–268 (2002).
[Crossref]

Xu, Y.-l.

Yao, N.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

Zhang, W.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Zhao, C.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

ACS Nano (1)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Lakhotiya, A. Nazir, S. P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S. R. Johannsen, B. R. Jeppesen, P. Balling, A. N. Larsen, and B. Julsgaard, “Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix,” Appl. Phys. Lett. 109, 263102 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (1)

Y. Kane, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

S. Kagami and I. Fukai, “Application of boundary-element method to electromagnetic field problems (short papers),” IEEE Trans. Microwave Theory Tech. 32, 455–461 (1984).
[Crossref]

J. Chem. Phys. (2)

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref] [PubMed]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
[Crossref]

J. Phys. Chem. B (2)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere Lithography : Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[Crossref]

Laser Photonics Rev. (1)

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6, 178–218 (2012).
[Crossref]

Nano Lett. (3)

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12, 2037–2044 (2012).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[Crossref] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Nano Letters (1)

M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers Plasmon Hybridization in Nanoparticle,” Nano Letters 4, 0–4 (2015).

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (1)

F. J. G. de Abajo, “Microscopy: Plasmons go quantum,” Nature 483, 417–418 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Part. Part. Syst. Charact. (1)

T. Wriedt, “Using the t-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256–268 (2002).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235408 (2005).
[Crossref]

Phys. Rev. E (1)

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494 (1997).
[Crossref]

Phys. Rev. Lett. (2)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320 (2015).
[Crossref] [PubMed]

Science (1)

S. Linden, “Magnetic response of metamaterials at 100[thinsp]terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Other (2)

J. M. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, 2014).

S. COMSOL AB, Stockholm, “COMSOL Multiphysics,” (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic illustration of the xz-plane at y = 0 for the (a) one- and (b) two-particle models. Origo is placed at the air/film interface at (a) the NP center and (b) midway between the NPs. The bottom NP diameter D and the two-particle center-to-center distance d are indicated. The NPs are modeled as truncated cones with top diameter 0.9D.

Fig. 2
Fig. 2

(a,b) Simulated field distributions at z = 0 for (a) ‖ and (b) ⊥ polarization, D = 270 nm, d = 2D and λ = 1290 nm (single particle resonance). To allow visualization of the far-field component, the color scale has been truncated at 2.5 even though the local field enhancement in (b) exceeds 20 within 1 nm of the NP edges. (c) Extinction cross section σext in units of the geometrical cross section σgeo as a function of λ for one- (dashed lines) and two-particle (solid lines) models for different d. The curves for which a peak sharpening/splitting is observed are shown in blue/red. (d,e) Simulated phase distributions. Shadings indicate particle positions for which peak sharpening (white) and splitting (black) is observed. Shown are Δϕ in (d) the xy-plane at the NP center (z = −25 nm) for λ = 1290 nm and (e) along the line (y, z) = (0, −25 nm) for different values of λ. The two plots (d,e) coincide along the dashed, white line.

Fig. 3
Fig. 3

Comparison of one- (dashed line) and two-particle models (solid lines) with experimental data (symbols, connected by a thin line in (a)). (a) Extinction spectra for a selected diameter in each series, 345 nm for S4k (left), 315 nm for S6k (center) and 270 nm for S8k (right). (b) Fitted peak position(s) as a function of inverse diameter D for the S4k, S6k and S8k series. The selected diameters in (a) are marked by grey, vertical shadings. The inserts show SEM images of a sample from each series.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

× ( × E ) ˜ r k 0 2 E = 0 ,
E = E B + E S ,
× ( × E S ) ˜ r k 0 2 E S = ( ˜ r ˜ rB ) k 0 2 E B .
σ ext = σ sct + σ abs = 1 I 0 Ω ( S S S ) d A ,

Metrics