Abstract

We have designed and fabricated a silicon photonic in-phase-quadrature (IQ) modulator based on a nested dual-drive Mach-Zehnder structure incorporating electrical packaging. We have assessed its use for generating Nyquist-shaped single sideband (SSB) signals by operating it either as an IQ Mach-Zehnder modulator (IQ-MZM) or using just a single branch of the dual-drive Mach-Zehnder modulator (DD-MZM). The impact of electrical packaging on the modulator bandwidth is also analyzed. We demonstrate 40 Gb/s (10Gbaud) 16-ary quadrature amplitude modulation (16-QAM) Nyquist-shaped SSB transmission over 160 km standard single mode fiber (SSMF). Without using any chromatic dispersion compensation, the bit error rates (BERs) of 5.4 × 10−4 and 9.0 × 10−5 were measured for the DD-MZM and IQ-MZM, respectively, far below the 7% hard-decision forward error correction threshold. The performance difference between IQ-MZM and DD-MZM is most likely due to the non-ideal electrical packaging. Our work is the first experimental comparison between silicon IQ-MZM and silicon DD-MZM in generating SSB signals. We also demonstrate 50 Gb/s (12.5Gbaud) 16-QAM Nyquist-shaped SSB transmission over 320 km SSMF with a BER of 2.7 × 10−3. Both the silicon IQ-MZM and the DD-MZM show potential for optical transmission at metro scale and for data center interconnection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation

Zhe Li, M. Sezer. Erkılınç, Stephan Pachnicke, Helmut Griesser, Rachid Bouziane, Benn C. Thomsen, Polina Bayvel, and Robert I. Killey
Opt. Express 23(18) 23694-23709 (2015)

Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system

Hsing-Yu Chen, Noriaki Kaneda, Jeffrey Lee, Jyehong Chen, and Young-Kai Chen
Opt. Express 25(6) 5852-5860 (2017)

Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection

Kaiheng Zou, Yixiao Zhu, Fan Zhang, and Zhangyuan Chen
Opt. Lett. 41(12) 2767-2770 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, and H. Wu, “Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator,” Opt. Express 22(16), 19818–19823 (2014).
    [Crossref] [PubMed]
  2. X. Luo, X. Tu, J. Song, L. Ding, Q. Fang, T.-Y. Liow, M. Yu, and G.-Q. Lo, “Slope efficiency and spurious-free dynamic range of silicon Mach-Zehnder modulator upon carrier depletion and injection effects,” Opt. Express 21(14), 16570–16577 (2013).
    [Crossref] [PubMed]
  3. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
    [Crossref] [PubMed]
  4. M. Lauermann, R. Palmer, S. Koeber, P. C. Schindler, D. Korn, T. Wahlbrink, J. Bolten, M. Waldow, D. L. Elder, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats,” Opt. Express 22(24), 29927–29936 (2014).
    [Crossref] [PubMed]
  5. S. Wolf, M. Lauermann, P. Schindler, G. Ronniger, K. Geistert, R. Palmer, S. Köber, W. Bogaerts, J. Leuthold, W. Freude, and C. Koos, “DAC-Less Amplifier-Less Generation and Transmission of QAM Signals Using Sub-Volt Silicon-Organic Hybrid Modulators,” J. Lightwave Technol. 33(7), 1425–1432 (2015).
    [Crossref]
  6. M. Chagnon, M. Morsy-Osman, M. Poulin, C. Paquet, S. Lessard, and D. V. Plant, “Experimental Parametric Study of a Silicon Photonic Modulator Enabled 112-Gb/s PAM Transmission System With a DAC and ADC,” J. Lightwave Technol. 33(7), 1380–1387 (2015).
    [Crossref]
  7. P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y. K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
    [Crossref] [PubMed]
  8. B. Hraimel, X. Zhang, M. Mohamed, and K. Wu, “Precompensated Optical Double-Sideband Subcarrier Modulation Immune to Fiber Chromatic-Dispersion-Induced Radio Frequency Power Fading,” J. Opt. Commun. Netw. 1(4), 331–342 (2009).
    [Crossref]
  9. M. S. Erkılınç, S. Kilmurray, R. Maher, M. Paskov, R. Bouziane, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Nyquist-shaped dispersion-precompensated subcarrier modulation with direct detection for spectrally-efficient WDM transmission,” Opt. Express 22(8), 9420–9431 (2014).
    [Crossref] [PubMed]
  10. K. Zou, Y. Zhu, F. Zhang, and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection,” Opt. Lett. 41(12), 2767–2770 (2016).
    [Crossref] [PubMed]
  11. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s Transmission Over 80-km SMF Using Direct-Detection SSB-DMT at C-Band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  12. W. C. Yan, Z. Sen, Y. Fang, L. Lei, W. Tao, Z. Qiang, S. Deng, L. G. Ning, and X. Xu, “Silicon IQ Modulator for Next-Generation Metro Network,” J. Lightwave Technol. 34(2), 730–736 (2016).
    [Crossref]
  13. D. A. I. Marpaung, “High dynamic range analog photonic links: design and implementation,” University of Twente (2009).
  14. C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.
  15. M. Sezer Erkılınc, Z. Li, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Spectrally Efficient WDM Nyquist Pulse-Shaped16-QAM Subcarrier Modulation TransmissionWith Direct Detection,” J. Lightwave Technol. 33(15), 3147–3154 (2015).
  16. M. S. Erkılınc, M. P. Thakur, S. Pachnicke, H. Griesser, J. Mitchell, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Spectrally Efficient WDM Nyquist Pulse-Shaped Subcarrier Modulation Using a Dual-Drive Mach–Zehnder Modulator and Direct Detection,” J. Lightwave Technol. 34(4), 1158–1165 (2016).
    [Crossref]
  17. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks stems,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [Crossref]

2016 (5)

2015 (3)

2014 (3)

2013 (2)

2010 (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks stems,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

2009 (1)

Akiyama, S.

Baba, T.

Bayvel, P.

Bogaerts, W.

Bolten, J.

Bouziane, R.

Cardea, I.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Chagnon, M.

Chandrasekhar, S.

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks stems,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Chen, X.

Chen, Y. K.

Chen, Z.

Dalton, L. R.

Demirtzioglou, I.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Deng, S.

Ding, L.

Dong, P.

Elder, D. L.

Erkilinc, M. S.

Erkilinç, M. S.

Fang, Q.

Fang, Y.

Freude, W.

Geistert, K.

Griesser, H.

Hirayama, N.

Horikawa, T.

Hraimel, B.

Imai, M.

Khoja, A.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Killey, R. I.

Kilmurray, S.

Kim, K.

Köber, S.

Koeber, S.

Koos, C.

Korn, D.

Lacava, C.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Lauermann, M.

Lei, L.

Lessard, S.

Leuthold, J.

Li, K.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Li, T.

Li, Z.

Liow, T.-Y.

Liu, G. N.

Lo, G.-Q.

Luo, X.

Maher, R.

Mao, Y.

Mitchell, J.

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks stems,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Mohamed, M.

Morsy-Osman, M.

Ning, L. G.

Noguchi, Y.

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks stems,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Pachnicke, S.

Palmer, R.

Paquet, C.

Paskov, M.

Petropoulos, P.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Plant, D. V.

Poulin, M.

Qiang, Z.

Reed, G.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Richardson, D.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Ronniger, G.

Ruan, X.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Schindler, P.

Schindler, P. C.

Sen, Z.

Sezer Erkilinc, M.

Sinsky, J. H.

Song, J.

Takahashi, H.

Tao, W.

Thakur, M. P.

Thomsen, B. C.

Thomson, D.

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Tu, X.

Usuki, T.

Wahlbrink, T.

Waldow, M.

Wang, D.

Wang, X.

Wolf, S.

Wu, H.

Wu, K.

Xu, X.

Yan, W. C.

Yu, M.

Zhang, F.

K. Zou, Y. Zhu, F. Zhang, and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection,” Opt. Lett. 41(12), 2767–2770 (2016).
[Crossref] [PubMed]

T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, and H. Wu, “Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator,” Opt. Express 22(16), 19818–19823 (2014).
[Crossref] [PubMed]

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhang, X.

Zhou, E.

Zhou, Z.

Zhu, Y.

Zou, K.

Zuo, T.

IEEE Commun. Mag. (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks stems,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

J. Lightwave Technol. (6)

M. Chagnon, M. Morsy-Osman, M. Poulin, C. Paquet, S. Lessard, and D. V. Plant, “Experimental Parametric Study of a Silicon Photonic Modulator Enabled 112-Gb/s PAM Transmission System With a DAC and ADC,” J. Lightwave Technol. 33(7), 1380–1387 (2015).
[Crossref]

S. Wolf, M. Lauermann, P. Schindler, G. Ronniger, K. Geistert, R. Palmer, S. Köber, W. Bogaerts, J. Leuthold, W. Freude, and C. Koos, “DAC-Less Amplifier-Less Generation and Transmission of QAM Signals Using Sub-Volt Silicon-Organic Hybrid Modulators,” J. Lightwave Technol. 33(7), 1425–1432 (2015).
[Crossref]

M. Sezer Erkılınc, Z. Li, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Spectrally Efficient WDM Nyquist Pulse-Shaped16-QAM Subcarrier Modulation TransmissionWith Direct Detection,” J. Lightwave Technol. 33(15), 3147–3154 (2015).

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s Transmission Over 80-km SMF Using Direct-Detection SSB-DMT at C-Band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

W. C. Yan, Z. Sen, Y. Fang, L. Lei, W. Tao, Z. Qiang, S. Deng, L. G. Ning, and X. Xu, “Silicon IQ Modulator for Next-Generation Metro Network,” J. Lightwave Technol. 34(2), 730–736 (2016).
[Crossref]

M. S. Erkılınc, M. P. Thakur, S. Pachnicke, H. Griesser, J. Mitchell, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Spectrally Efficient WDM Nyquist Pulse-Shaped Subcarrier Modulation Using a Dual-Drive Mach–Zehnder Modulator and Direct Detection,” J. Lightwave Technol. 34(4), 1158–1165 (2016).
[Crossref]

J. Opt. Commun. Netw. (1)

Opt. Express (6)

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
[Crossref] [PubMed]

X. Luo, X. Tu, J. Song, L. Ding, Q. Fang, T.-Y. Liow, M. Yu, and G.-Q. Lo, “Slope efficiency and spurious-free dynamic range of silicon Mach-Zehnder modulator upon carrier depletion and injection effects,” Opt. Express 21(14), 16570–16577 (2013).
[Crossref] [PubMed]

M. S. Erkılınç, S. Kilmurray, R. Maher, M. Paskov, R. Bouziane, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Nyquist-shaped dispersion-precompensated subcarrier modulation with direct detection for spectrally-efficient WDM transmission,” Opt. Express 22(8), 9420–9431 (2014).
[Crossref] [PubMed]

T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, and H. Wu, “Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator,” Opt. Express 22(16), 19818–19823 (2014).
[Crossref] [PubMed]

M. Lauermann, R. Palmer, S. Koeber, P. C. Schindler, D. Korn, T. Wahlbrink, J. Bolten, M. Waldow, D. L. Elder, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats,” Opt. Express 22(24), 29927–29936 (2014).
[Crossref] [PubMed]

P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y. K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (2)

D. A. I. Marpaung, “High dynamic range analog photonic links: design and implementation,” University of Twente (2009).

C. Lacava, I. Demirtzioglou, I. Cardea, A. Khoja, K. Li, D. Thomson, X. Ruan, F. Zhang, G. Reed, D. Richardson, and P. Petropoulos, “Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator,” in European Conference on Optical Communications (2017), P2.6–11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Structure of (a) the PCB board and (b) the silicon chip with IQ modulators.

Fig. 2
Fig. 2

Electrical S21 parameter measured for different packaging conditions under different reverse bias voltages.

Fig. 3
Fig. 3

Schematic diagram of DD-MZM. RF: radio frequency; PM: phase modulator.

Fig. 4
Fig. 4

Experimental setup for (a) IQ-MZM and (b) DD-MZM. ECL: external cavity laser; AWG: arbitrary waveform generator; EDFA: erbium-doped optical fiber amplifier; SSMF: standard single-mode fiber; OBPF: optical band-pass filter; PD: photodiode; EA: electrical amplifier; DSO: digital storage oscilloscope; PC: polarization controller. (a) V π/2 : bias voltage to control π/2 phase shift heater; V I or V Q : bias voltage to change the phase difference between two arms of a single MZM; V Rev : reverse bias voltage to control the operation point of all PN junctions; Iand I ¯ : RF signal and its opposite of I branch; Q and Q ¯ : RF signal and its opposite of Q branch. (b) V π/2 : bias voltage to set the phase difference between two arms of a DD-MZM as π/2 ; Iand Q: independent RF signals to drive two arms of a DD-MZM.

Fig. 5
Fig. 5

Generation and detection of the SSB signal. The insets are the corresponding spectra of the signals at each stage of the DSP. The blue part is the signal, and the red part is the interference. The symbol rate is FS and the subcarrier frequency is FC. (a) Transmitter side DSP. RRC: root raise cosine. (b) Receiver side DSP. SSBI: signal-signal beat interference. (c) Frame structure of baseband signal.

Fig. 6
Fig. 6

Measured BERs as a function of the launch power for DD-MZM and IQ-MZM after 160 km SSMF transmission with the CSPR fixed at 16.4 dB. The baud rate of the signal is 10 Gbaud.

Fig. 7
Fig. 7

Received optical spectra at different transmission distances with 0.01 nm resolution for (a) DD-MZM and (b) IQ-MZM. (c) Comparison of transmitted optical spectrums between the DD-MZM and the IQ-MZM with 0.01 nm resolution. The baud rate of the signal is 10 Gbaud.

Fig. 8
Fig. 8

Received electrical spectra after down-converting in BTB scenario with and without pre-equalization for silicon IQ-MZM.

Fig. 9
Fig. 9

(a) BER performance versus OSNR at different transmission distances with different modulators. The baud rate of the signal is 10 Gbaud. (b) (c) Constellation maps for IQ-MZM and DD-MZM in BTB scenario, respectively. (d) (e) Constellation maps for IQ-MZM and DD-MZM after 160 km transmission, respectively.

Fig. 10
Fig. 10

Measured BERs as a function of the launch power after 320 km SSMF transmission with different CSPRs.

Fig. 11
Fig. 11

(a) OSNR as a function of transmission distance measured at 0.1 nm resolution. (b) Measured BER as a function of transmission distance with the CSPR of 14.4 dB and launch power of 5.0 dBm.

Fig. 12
Fig. 12

BER performance versus OSNR at different transmission distances with the silicon IQ-MZM. The baud rate of the signal is 12.5 Gbaud.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E out = 1 2 E in [jexp(j V I V π π)+exp(j V Q V π π)] 1 2 E in [ π V π ( V I +j V Q )+1j].

Metrics