Abstract

Efficient 1.57 μm continuous-wave laser was demonstrated in an X-cut, 2.0 mm-thick Er3+:Yb3+:LaMgB5O10 crystal with sapphire cooling end-pumped by a 976 nm laser diode. In a plano-concave cavity, a laser with a maximum output power of 0.61 W and a slope efficiency of 23% was realized at an absorbed pump power of 4.0 W. A continuous-wave 1566 nm micro-laser with a maximum output power of 0.47 W and a slope efficiency of 16% was also obtained. The lasers were totally linear polarization parallel to the crystalline Z axis. The results show that the Er3+:Yb3+:LaMgB5O10 crystal with high thermal conductivity may be a good gain medium for laser around 1.55 μm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectra and diode-pumped continuous-wave 1.55 µm laser of Er:Yb:Ca3NbGa3Si2O14 crystal

Yujin Chen, Guoliang Gong, Jianhua Huang, Yanfu Lin, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 27(24) 35418-35425 (2019)

Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 23(9) 12401-12406 (2015)

Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal around 1.55 μm

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 26(1) 419-427 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
    [Crossref]
  2. J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
    [Crossref]
  3. G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27(11), B93–B105 (2010).
    [Crossref]
  4. P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
    [Crossref]
  5. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
    [Crossref] [PubMed]
  6. K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
    [Crossref] [PubMed]
  7. J. Huang, Y. Chen, X. Gong, Y. Lin, Z. Luo, and Y. Huang, “Spectral and laser properties of Er:Yb:Sr3Lu2(BO3)4 crystal at 1.5–1.6 μm,” Opt. Mater. Express 3(11), 1885–1892 (2013).
    [Crossref]
  8. Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm,” Opt. Express 23(9), 12401–12406 (2015).
    [Crossref] [PubMed]
  9. Y. Rudnitskii, L. Shachkin, S. Durmanov, and G. Smirnov, “Longitudinally diode-pumped quasi-continuous Yb3+:Er3+:LSB laser,” Quantum Electron. 35(12), 1113–1116 (2005).
    [Crossref]
  10. P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
    [Crossref]
  11. B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
    [Crossref]
  12. J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express 16(22), 17243–17248 (2008).
    [Crossref] [PubMed]
  13. B. Saubat, M. Vlasse, and C. Fouassier, “Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln= La,…, Er),” J. Solid State Chem. 34(3), 271–277 (1980).
    [Crossref]
  14. Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
    [Crossref]
  15. H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
    [Crossref] [PubMed]
  16. Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
    [Crossref]
  17. Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
    [Crossref]
  18. H. Zhu, D. Tang, Y. Duan, D. Luo, and J. Zhang, “Laser operation of diode-pumped Er,Yb codoped YAG ceramics at 1.6 μm,” Opt. Express 21(22), 26955–26961 (2013).
    [Crossref] [PubMed]
  19. S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
    [Crossref]
  20. J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
    [Crossref]
  21. W. Koechner, Solid-State Laser Engineering (Springer, New York, 2006).
  22. Y. Chen, Y. Lin, Y. Zou, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Diode-pumped 1.5-1.6 μm laser operation in Er3+ doped YbAl3(BO3)4 microchip,” Opt. Express 22(11), 13969–13974 (2014).
    [Crossref] [PubMed]
  23. D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [Crossref]

2017 (1)

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

2016 (1)

2015 (5)

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm,” Opt. Express 23(9), 12401–12406 (2015).
[Crossref] [PubMed]

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
[Crossref] [PubMed]

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

2014 (1)

2013 (2)

2011 (1)

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

2010 (1)

2008 (1)

2007 (1)

2005 (1)

Y. Rudnitskii, L. Shachkin, S. Durmanov, and G. Smirnov, “Longitudinally diode-pumped quasi-continuous Yb3+:Er3+:LSB laser,” Quantum Electron. 35(12), 1113–1116 (2005).
[Crossref]

2004 (2)

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

2002 (1)

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

2001 (1)

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

1999 (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
[Crossref]

1980 (1)

B. Saubat, M. Vlasse, and C. Fouassier, “Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln= La,…, Er),” J. Solid State Chem. 34(3), 271–277 (1980).
[Crossref]

1966 (1)

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Belghachem, N.

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

Burns, P.

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Chen, H.

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
[Crossref] [PubMed]

Chen, Y.

Clay, R.

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Dawes, J.

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Dekker, P.

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

Denker, B.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Duan, Y.

Durmanov, S.

Y. Rudnitskii, L. Shachkin, S. Durmanov, and G. Smirnov, “Longitudinally diode-pumped quasi-continuous Yb3+:Er3+:LSB laser,” Quantum Electron. 35(12), 1113–1116 (2005).
[Crossref]

Findlay, D.

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Fouassier, C.

B. Saubat, M. Vlasse, and C. Fouassier, “Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln= La,…, Er),” J. Solid State Chem. 34(3), 271–277 (1980).
[Crossref]

Galagan, B.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Gong, X.

Gorbachenya, K. N.

Hellstrom, J.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Huang, J.

Huang, Y.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
[Crossref] [PubMed]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm,” Opt. Express 23(9), 12401–12406 (2015).
[Crossref] [PubMed]

Y. Chen, Y. Lin, Y. Zou, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Diode-pumped 1.5-1.6 μm laser operation in Er3+ doped YbAl3(BO3)4 microchip,” Opt. Express 22(11), 13969–13974 (2014).
[Crossref] [PubMed]

J. Huang, Y. Chen, X. Gong, Y. Lin, Z. Luo, and Y. Huang, “Spectral and laser properties of Er:Yb:Sr3Lu2(BO3)4 crystal at 1.5–1.6 μm,” Opt. Mater. Express 3(11), 1885–1892 (2013).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express 16(22), 17243–17248 (2008).
[Crossref] [PubMed]

Huber, G.

Ivleva, L.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Karlsson, G.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Kisel, V. E.

Kopczynski, K.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Koporulina, E. V.

Kränkel, C.

Kuleshov, N. V.

Kurilchik, S. V.

Laporta, P.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
[Crossref]

Laurell, F.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Laurell, T.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Leonyuk, N. I.

Li, B.

Liao, W.

Lin, Y.

Lin, Z.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
[Crossref] [PubMed]

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
[Crossref]

Luo, D.

Luo, Z.

Malinowska, M.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Maltsev, V. V.

Meng, X.

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Mierczyk, Z.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Mlynczak, J.

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Osiko, V.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Osiwianski, P.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Petermann, K.

Pilipenko, O. V.

Piper, J.

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Rudnitskii, Y.

Y. Rudnitskii, L. Shachkin, S. Durmanov, and G. Smirnov, “Longitudinally diode-pumped quasi-continuous Yb3+:Er3+:LSB laser,” Quantum Electron. 35(12), 1113–1116 (2005).
[Crossref]

Saubat, B.

B. Saubat, M. Vlasse, and C. Fouassier, “Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln= La,…, Er),” J. Solid State Chem. 34(3), 271–277 (1980).
[Crossref]

Shachkin, L.

Y. Rudnitskii, L. Shachkin, S. Durmanov, and G. Smirnov, “Longitudinally diode-pumped quasi-continuous Yb3+:Er3+:LSB laser,” Quantum Electron. 35(12), 1113–1116 (2005).
[Crossref]

Smirnov, G.

Y. Rudnitskii, L. Shachkin, S. Durmanov, and G. Smirnov, “Longitudinally diode-pumped quasi-continuous Yb3+:Er3+:LSB laser,” Quantum Electron. 35(12), 1113–1116 (2005).
[Crossref]

Sorbello, G.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Sun, S.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
[Crossref]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
[Crossref]

Sverchkov, S.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Taccheo, S.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
[Crossref]

Tang, D.

Tolstik, N. A.

Vlasse, M.

B. Saubat, M. Vlasse, and C. Fouassier, “Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln= La,…, Er),” J. Solid State Chem. 34(3), 271–277 (1980).
[Crossref]

Voronina, I.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Wang, G.

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

Wang, J.

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

Wang, P.

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Yasukevich, A. S.

Yuan, F.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

Zhang, G.

H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
[Crossref] [PubMed]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

Zhang, H.

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Zhang, J.

Zhang, L.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

Zhao, W.

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Zhou, W.

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Zhu, H.

Zhu, L.

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Zou, Y.

Appl. Phys. B (1)

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb:Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5 μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

CrystEngComm (1)

Y. Huang, W. Zhou, S. Sun, F. Yuan, L. Zhang, W. Zhao, G. Wang, and Z. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10–a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Burns, J. Dawes, P. Dekker, J. Piper, H. Zhang, and J. Wang, “Optimization of Er,Yb:YCOB for cw laser operation,” IEEE J. Quantum Electron. 40(11), 1575–1582 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

J. Alloys Compd. (2)

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Huang, H. Chen, S. Sun, F. Yuan, L. Zhang, Z. Lin, G. Zhang, and G. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10–a new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Solid State Chem. (1)

B. Saubat, M. Vlasse, and C. Fouassier, “Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln= La,…, Er),” J. Solid State Chem. 34(3), 271–277 (1980).
[Crossref]

Laser Phys. Lett. (1)

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (2)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2–3), 269–288 (1999).
[Crossref]

P. Wang, J. Dawes, P. Burns, J. Piper, H. Zhang, L. Zhu, and X. Meng, “Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm,” Opt. Mater. 19(3), 383–387 (2002).
[Crossref]

Opt. Mater. Express (1)

Opto-Electron. Rev. (1)

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Phys. Lett. (1)

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Quantum Electron. (1)

Y. Rudnitskii, L. Shachkin, S. Durmanov, and G. Smirnov, “Longitudinally diode-pumped quasi-continuous Yb3+:Er3+:LSB laser,” Quantum Electron. 35(12), 1113–1116 (2005).
[Crossref]

Other (1)

W. Koechner, Solid-State Laser Engineering (Springer, New York, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Room-temperature polarized absorption spectra between 850 and 1050 nm of an X-cut Er:Yb:LMB crystal.
Fig. 2
Fig. 2 Experimental setup of cw 976 nm-diode-pumped Er:Yb:LMB 1.57 μm laser.
Fig. 3
Fig. 3 (a) Output power realized in the Er:Yb:LMB crystal as a function of absorbed pump power. (b) Squared beam radius ω2 of output laser as a function of the distance Z from the focusing lens at an absorbed pump power of 4.0 W. (c) Laser spectra for different OM transmissions at an absorbed pump power of 4.0 W.
Fig. 4
Fig. 4 (a) Room-temperature absorption (black line) and emission (red line) cross section spectra of the Er:Yb:LMB crystal in 1450–1650 nm for different polarizations. (b) Room-temperature gain spectra of the Er:Yb:LMB crystal in 1500–1600 nm for different polarizations when the inversion parameter β is 0.4. (c) Gain spectra of the Er:Yb:LMB crystal in 1500–1600 nm for E//Z polarization and different β. L is the cavity losses.
Fig. 5
Fig. 5 (a) Experimental setup of cw 976 nm-diode-pumped Er:Yb:LMB 1.57 μm micro-laser. (b) Output power realized in the micro-laser as a function of absorbed pump power. The inset shows the spectrum of the micro-laser. (c) Squared beam radius ω2 of the output laser as a function of the distance Z from the focusing lens at an absorbed pump power of 4.0 W.

Metrics