Abstract

We experimentally demonstrate nearly ideal liquid crystal (LC) polymer Bragg polarization gratings (PGs) operating at a visible wavelength of 450 nm and with a sub-wavelength period of 335 nm. Bragg PGs employ the geometric (Pancharatnam-Berry) phase, and have many properties fundamentally different than their isotropic analog. However, until now Bragg PGs with nanoscale periods (e.g., < 800 nm) have not been realized. Using photo-alignment polymers and high-birefringence LC materials, we employ multiple thin sublayers to overcome the critical thickness threshold, and use chiral dopants to induce a helical twist that effectively generates a slanted grating. These LC polymer Bragg PGs manifest 85–99% first-order efficiency, 19–29° field-of-view, Q ≈ 17, 200 nm spectral bandwidth, 84° deflection angle in air (in one case), and efficient waveguide-coupling (in another case). Compared to surface-relief and volume-holographic gratings, they show high efficiency with larger angular/spectral bandwidths and potentially simpler fabrication. These nanoscale Bragg PGs manifest a 6π rad/μm phase gradient, the largest reported for a geometric-phase hologram while maintaining a first-order efficiency near 100%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Holographic Bragg gratings in a photoresponsive cross-linked polymer–liquid-crystal composite

Naoki Yoshimoto, Shin’ya Morino, Masaru Nakagawa, and Kunihiro Ichimura
Opt. Lett. 27(3) 182-184 (2002)

Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices

A. d’Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov
Opt. Lett. 29(12) 1405-1407 (2004)

Polarization-selective switching in holographically formed polymer dispersed liquid crystals

Y. Boiko, J. Eakin, J. Vedrine, and G. P. Crawford
Opt. Lett. 27(19) 1717-1719 (2002)

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31(5), 579–588 (1984).
    [Crossref]
  2. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
    [Crossref]
  3. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [Crossref]
  4. M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
    [Crossref]
  5. J. Tervo, V. Kettunen, M. Honkanen, and J. Turunen, “Design of space-variant diffractive polarization elements,” J. Opt. Soc. Am. A 20, (2)282–289 (2003).
    [Crossref]
  6. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of complex wavefronts by use of quasi-periodic subwavelength structures,” Proc. SPIE 5347, 126–136 (2004).
    [Crossref]
  7. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref] [PubMed]
  8. G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
    [Crossref]
  9. M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
    [Crossref]
  10. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
    [Crossref]
  11. H. Sarkissian, S. V. Serak, N. Tabiryan, L. Glebov, V. Rotar, and B. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [Crossref] [PubMed]
  12. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part 1: An Achromatic Circular Polarizer,” Proc. - Indian Acad. Sci. A 41, (4)130–136 (1955).
  13. M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, A 392(1802), 45–57 (1984).
    [Crossref]
  14. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88, 221102 (2006).
    [Crossref]
  15. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  16. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [Crossref]
  17. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
    [Crossref]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909–2947 (1969).
    [Crossref]
  19. T. K. Gaylord and M. G. Moharam, “Thin and Thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
    [Crossref] [PubMed]
  20. P. Ayras, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–666 (2009).
    [Crossref]
  21. I. K. Baldry, J. B. Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ.Astron.Soc.Pac. 116(819), 403–414 (2004).
  22. A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polym. J. 42, 525–533 (2010).
    [Crossref]
  23. A. Bogdanov, A. Bobrovsky, A. Ryabchun, and A. Vorobiev, “Laser-induced holographic light scattering in a liquid-crystalline azobenzene-containing polymer,” Phys. Rev. E 85(1), 011704 (2012).
    [Crossref]
  24. H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation in polarization holograms formed in photoreactive polymer liquid crystals,” Jpn. J. Appl. Phys. 47(5), 3559–3563 (2008).
    [Crossref]
  25. T. Sasaki, K. Miura, O. Hanaizumi, A. Emoto, and H. Ono, “Coupled-wave analysis of vector holograms: effects of modulation depth of anisotropic phase retardation,” Appl. Opt. 49(28), 5205–5211 (2010).
    [Crossref] [PubMed]
  26. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  27. R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21(1), 404–420 (2013).
    [Crossref] [PubMed]
  28. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
    [Crossref]
  29. R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76(2), 021701 (2007).
    [Crossref]
  30. M. Xu, D. K. G. de Boer, C. van Heesch, A. J. H. Wachters, and H. P. Urbach, “Photoanisotropic polarization gratings beyond the small recording angle regime,” Opt. Express 18(7), 6703–6721 (2010).
    [Crossref] [PubMed]
  31. T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Lett. 19(16), 15127–15142 (2011).
  32. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically Aligned Liquid Crystal: Potential Application for Projection Displays,” Mol. Cryst. Liquid Cryst. 451, 1–19 (2006).
    [Crossref]
  33. J. Chou, L. Parameswaran, B. Kimball, and M. Rothschild, “Electrically switchable diffractive waveplates with metasurface aligned liquid crystals,” Opt. Express 24, 24265–24273 (2016).
    [Crossref] [PubMed]
  34. K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornheim, V. Finnemeyer, B. Roberts, and P. Boss, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
    [Crossref] [PubMed]
  35. M. J. Escuti, D. J. Kekas, and R. K. Komanduri, “Bragg liquid crystal polarization gratings,” US Patent Application14/813,660 (2014).
  36. S. Kelly, “Anisotropic networks,” J. Mater. Chem. 5(12), 2047–2061 (1995).
    [Crossref]
  37. D. J. Broer, “Photoinitiated polymerization and crosslinking of liquid-crystalline systems,” Radiation Curing in Polymer Science and Technology 3 Polymerisation Mechanisms, Ch. 12, 383–443, (Springer, 1993).
  38. Y. Weng, D. Xu, Y. Zhang, X. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(15), 17746–17759 (2016).
    [Crossref] [PubMed]
  39. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nature Photon.  10, 389–392 (2016).
    [Crossref]
  40. M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
    [Crossref]
  41. L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
    [Crossref] [PubMed]
  42. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
    [Crossref]
  43. V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
    [Crossref]
  44. E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
    [Crossref]

2017 (1)

2016 (4)

2015 (3)

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

2013 (3)

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21(1), 404–420 (2013).
[Crossref] [PubMed]

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
[Crossref]

2012 (1)

A. Bogdanov, A. Bobrovsky, A. Ryabchun, and A. Vorobiev, “Laser-induced holographic light scattering in a liquid-crystalline azobenzene-containing polymer,” Phys. Rev. E 85(1), 011704 (2012).
[Crossref]

2011 (1)

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Lett. 19(16), 15127–15142 (2011).

2010 (3)

2009 (1)

P. Ayras, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–666 (2009).
[Crossref]

2008 (2)

H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation in polarization holograms formed in photoreactive polymer liquid crystals,” Jpn. J. Appl. Phys. 47(5), 3559–3563 (2008).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

2007 (3)

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76(2), 021701 (2007).
[Crossref]

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

2006 (6)

M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. Tabiryan, L. Glebov, V. Rotar, and B. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88, 221102 (2006).
[Crossref]

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically Aligned Liquid Crystal: Potential Application for Projection Displays,” Mol. Cryst. Liquid Cryst. 451, 1–19 (2006).
[Crossref]

2005 (1)

G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

2004 (2)

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of complex wavefronts by use of quasi-periodic subwavelength structures,” Proc. SPIE 5347, 126–136 (2004).
[Crossref]

I. K. Baldry, J. B. Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ.Astron.Soc.Pac. 116(819), 403–414 (2004).

2003 (2)

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

J. Tervo, V. Kettunen, M. Honkanen, and J. Turunen, “Design of space-variant diffractive polarization elements,” J. Opt. Soc. Am. A 20, (2)282–289 (2003).
[Crossref]

2002 (1)

1999 (1)

1995 (1)

S. Kelly, “Anisotropic networks,” J. Mater. Chem. 5(12), 2047–2061 (1995).
[Crossref]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

1984 (2)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31(5), 579–588 (1984).
[Crossref]

M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, A 392(1802), 45–57 (1984).
[Crossref]

1981 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909–2947 (1969).
[Crossref]

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part 1: An Achromatic Circular Polarizer,” Proc. - Indian Acad. Sci. A 41, (4)130–136 (1955).

Afanasyev, A. D.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
[Crossref]

Akiyama, H.

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

Ayras, P.

P. Ayras, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–666 (2009).
[Crossref]

Baldry, I. K.

I. K. Baldry, J. B. Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ.Astron.Soc.Pac. 116(819), 403–414 (2004).

Bastiaansen, C.

M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
[Crossref]

Bastiaansen, C. W. M.

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Lett. 19(16), 15127–15142 (2011).

Berry, M.

M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, A 392(1802), 45–57 (1984).
[Crossref]

Berry, S.

Biener, G.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of complex wavefronts by use of quasi-periodic subwavelength structures,” Proc. SPIE 5347, 126–136 (2004).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref]

Bobrovsky, A.

A. Bogdanov, A. Bobrovsky, A. Ryabchun, and A. Vorobiev, “Laser-induced holographic light scattering in a liquid-crystalline azobenzene-containing polymer,” Phys. Rev. E 85(1), 011704 (2012).
[Crossref]

Bogdanov, A.

A. Bogdanov, A. Bobrovsky, A. Ryabchun, and A. Vorobiev, “Laser-induced holographic light scattering in a liquid-crystalline azobenzene-containing polymer,” Phys. Rev. E 85(1), 011704 (2012).
[Crossref]

Bomzon, Z.

Boss, P.

Broer, D.

M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
[Crossref]

Broer, D. J.

D. J. Broer, “Photoinitiated polymerization and crosslinking of liquid-crystalline systems,” Radiation Curing in Polymer Science and Technology 3 Polymerisation Mechanisms, Ch. 12, 383–443, (Springer, 1993).

Callan-Jones, A.

G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Chigrinov, V.

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Chigrinov, V. G.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
[Crossref]

Chou, J.

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Crawford, G.

G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

de Boer, D. K. G.

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Lett. 19(16), 15127–15142 (2011).

M. Xu, D. K. G. de Boer, C. van Heesch, A. J. H. Wachters, and H. P. Urbach, “Photoanisotropic polarization gratings beyond the small recording angle regime,” Opt. Express 18(7), 6703–6721 (2010).
[Crossref] [PubMed]

de Jong, T. M.

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Lett. 19(16), 15127–15142 (2011).

De Sio, L.

Eakin, J.

G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Emoto, A.

T. Sasaki, K. Miura, O. Hanaizumi, A. Emoto, and H. Ono, “Coupled-wave analysis of vector holograms: effects of modulation depth of anisotropic phase retardation,” Appl. Opt. 49(28), 5205–5211 (2010).
[Crossref] [PubMed]

H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation in polarization holograms formed in photoreactive polymer liquid crystals,” Jpn. J. Appl. Phys. 47(5), 3559–3563 (2008).
[Crossref]

Escuti, M. J.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
[Crossref]

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21(1), 404–420 (2013).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76(2), 021701 (2007).
[Crossref]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
[Crossref]

M. J. Escuti, D. J. Kekas, and R. K. Komanduri, “Bragg liquid crystal polarization gratings,” US Patent Application14/813,660 (2014).

Finnemeyer, V.

Gao, K.

Gaylord, T. K.

Glebov, L.

Gori, F.

Hanaizumi, O.

Hasman, E.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of complex wavefronts by use of quasi-periodic subwavelength structures,” Proc. SPIE 5347, 126–136 (2004).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref]

Hawthorn, J. B.

I. K. Baldry, J. B. Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ.Astron.Soc.Pac. 116(819), 403–414 (2004).

Honkanen, M.

Ikeda, T.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Ishiguro, M.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Kawatsuki, N.

H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation in polarization holograms formed in photoreactive polymer liquid crystals,” Jpn. J. Appl. Phys. 47(5), 3559–3563 (2008).
[Crossref]

Kekas, D. J.

M. J. Escuti, D. J. Kekas, and R. K. Komanduri, “Bragg liquid crystal polarization gratings,” US Patent Application14/813,660 (2014).

Kelly, S.

S. Kelly, “Anisotropic networks,” J. Mater. Chem. 5(12), 2047–2061 (1995).
[Crossref]

Kenney, M.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Kettunen, V.

Kim, J.

Kimball, B.

Kimball, B. R.

Kleiner, V.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of complex wavefronts by use of quasi-periodic subwavelength structures,” Proc. SPIE 5347, 126–136 (2004).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref]

Kobashi, J.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nature Photon.  10, 389–392 (2016).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909–2947 (1969).
[Crossref]

Komanduri, R. K.

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21(1), 404–420 (2013).
[Crossref] [PubMed]

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76(2), 021701 (2007).
[Crossref]

M. J. Escuti, D. J. Kekas, and R. K. Komanduri, “Bragg liquid crystal polarization gratings,” US Patent Application14/813,660 (2014).

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Kress, B.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Kudenov, M. W.

Kwok, H.-S.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
[Crossref]

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

Lawler, K. F.

Levola, T.

P. Ayras, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–666 (2009).
[Crossref]

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

Li, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Li, X.

Li, Y.

Liao, Z.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88, 221102 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88, 221102 (2006).
[Crossref]

McGinty, C.

Miskiewicz, M. N.

Miura, K.

Moharam, M. G.

Muhlenbernd, H.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Muravski, A.

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

Nersisyan, S.

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31(5), 579–588 (1984).
[Crossref]

Niv, A.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of complex wavefronts by use of quasi-periodic subwavelength structures,” Proc. SPIE 5347, 126–136 (2004).
[Crossref]

Oh, C.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
[Crossref]

Ono, H.

T. Sasaki, K. Miura, O. Hanaizumi, A. Emoto, and H. Ono, “Coupled-wave analysis of vector holograms: effects of modulation depth of anisotropic phase retardation,” Appl. Opt. 49(28), 5205–5211 (2010).
[Crossref] [PubMed]

H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation in polarization holograms formed in photoreactive polymer liquid crystals,” Jpn. J. Appl. Phys. 47(5), 3559–3563 (2008).
[Crossref]

Ozaki, M.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nature Photon.  10, 389–392 (2016).
[Crossref]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part 1: An Achromatic Circular Polarizer,” Proc. - Indian Acad. Sci. A 41, (4)130–136 (1955).

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88, 221102 (2006).
[Crossref]

Parameswaran, L.

Park, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically Aligned Liquid Crystal: Potential Application for Projection Displays,” Mol. Cryst. Liquid Cryst. 451, 1–19 (2006).
[Crossref]

Payson, H.

Pelcovits, R.

G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Radcliffe, M.

G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Roberts, B.

Roberts, D. E.

Robertson, J. G.

I. K. Baldry, J. B. Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ.Astron.Soc.Pac. 116(819), 403–414 (2004).

Rotar, V.

Rothschild, M.

Ryabchun, A.

A. Bogdanov, A. Bobrovsky, A. Ryabchun, and A. Vorobiev, “Laser-induced holographic light scattering in a liquid-crystalline azobenzene-containing polymer,” Phys. Rev. E 85(1), 011704 (2012).
[Crossref]

Saarikko, P.

P. Ayras, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–666 (2009).
[Crossref]

Sanchez, C.

M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
[Crossref]

Sarkissian, H.

H. Sarkissian, S. V. Serak, N. Tabiryan, L. Glebov, V. Rotar, and B. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically Aligned Liquid Crystal: Potential Application for Projection Displays,” Mol. Cryst. Liquid Cryst. 451, 1–19 (2006).
[Crossref]

Sasaki, T.

Sato, D.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Sekiguchi, T.

H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation in polarization holograms formed in photoreactive polymer liquid crystals,” Jpn. J. Appl. Phys. 47(5), 3559–3563 (2008).
[Crossref]

Serak, S. V.

Shishido, A.

A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polym. J. 42, 525–533 (2010).
[Crossref]

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Shteyner, E. A.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
[Crossref]

Srivastava, A. K.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
[Crossref]

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Steeves, D. M.

Tabirian, N.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically Aligned Liquid Crystal: Potential Application for Projection Displays,” Mol. Cryst. Liquid Cryst. 451, 1–19 (2006).
[Crossref]

Tabiryan, N.

Takada, H.

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

Takatsu, H.

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

Tervo, J.

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31(5), 579–588 (1984).
[Crossref]

Turunen, J.

Urbach, H. P.

Uskova, O.

van Heesch, C.

Vornheim, J.

Vorobiev, A.

A. Bogdanov, A. Bobrovsky, A. Ryabchun, and A. Vorobiev, “Laser-induced holographic light scattering in a liquid-crystalline azobenzene-containing polymer,” Phys. Rev. E 85(1), 011704 (2012).
[Crossref]

Wachters, A. J. H.

Weng, Y.

Wickboldt, L.

Wu, S. T.

Xu, D.

Xu, M.

Yoshida, H.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nature Photon.  10, 389–392 (2016).
[Crossref]

Zeldovich, B.

H. Sarkissian, S. V. Serak, N. Tabiryan, L. Glebov, V. Rotar, and B. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically Aligned Liquid Crystal: Potential Application for Projection Displays,” Mol. Cryst. Liquid Cryst. 451, 1–19 (2006).
[Crossref]

Zentgraf, T.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Zhang, S.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zheng, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88, 221102 (2006).
[Crossref]

Bell System Technical Journal (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909–2947 (1969).
[Crossref]

J. Appl. Phys. (1)

G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

J. Mater. Chem. (1)

S. Kelly, “Anisotropic networks,” J. Mater. Chem. 5(12), 2047–2061 (1995).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (2)

P. Ayras, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–666 (2009).
[Crossref]

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation in polarization holograms formed in photoreactive polymer liquid crystals,” Jpn. J. Appl. Phys. 47(5), 3559–3563 (2008).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Langmuir (1)

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Mol. Cryst. Liquid Cryst. (1)

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically Aligned Liquid Crystal: Potential Application for Projection Displays,” Mol. Cryst. Liquid Cryst. 451, 1–19 (2006).
[Crossref]

Nat. Nanotechnol. (1)

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Nature Photon (1)

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nature Photon.  10, 389–392 (2016).
[Crossref]

Opt. Acta (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31(5), 579–588 (1984).
[Crossref]

Opt. Eng. (1)

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (1)

Phys. Rev. A (1)

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

Phys. Rev. E (3)

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76(2), 021701 (2007).
[Crossref]

V. Chigrinov, A. Muravski, H.-S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003).
[Crossref]

A. Bogdanov, A. Bobrovsky, A. Ryabchun, and A. Vorobiev, “Laser-induced holographic light scattering in a liquid-crystalline azobenzene-containing polymer,” Phys. Rev. E 85(1), 011704 (2012).
[Crossref]

Polym. J. (1)

A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polym. J. 42, 525–533 (2010).
[Crossref]

Proc. - Indian Acad. Sci. A (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part 1: An Achromatic Circular Polarizer,” Proc. - Indian Acad. Sci. A 41, (4)130–136 (1955).

Proc. R. Soc. London, A (1)

M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, A 392(1802), 45–57 (1984).
[Crossref]

Proc. SPIE (3)

M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302630207 (2006).
[Crossref]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of complex wavefronts by use of quasi-periodic subwavelength structures,” Proc. SPIE 5347, 126–136 (2004).
[Crossref]

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Publ.Astron.Soc.Pac. (1)

I. K. Baldry, J. B. Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ.Astron.Soc.Pac. 116(819), 403–414 (2004).

Soft Matter (1)

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9(21), 5160–5165 (2013).
[Crossref]

Other (2)

M. J. Escuti, D. J. Kekas, and R. K. Komanduri, “Bragg liquid crystal polarization gratings,” US Patent Application14/813,660 (2014).

D. J. Broer, “Photoinitiated polymerization and crosslinking of liquid-crystalline systems,” Radiation Curing in Polymer Science and Technology 3 Polymerisation Mechanisms, Ch. 12, 383–443, (Springer, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

LC polymer Bragg PG nematic director structure formed by N sublayers: (a) illustrated schematic, and (b) calculated director orientations, with Λ = 335 nm, ϕ = −340°, d = 1000 nm.

Fig. 2
Fig. 2

LC polymer Bragg PG measurement notation.

Fig. 3
Fig. 3

Scanning electron microscope image of a slanted Bragg PG (3% chiral) with peak efficiency angle θP = −3°.

Fig. 4
Fig. 4

Measured angular response of the diffraction efficiency of several LC polymer Bragg PGs, all with Λx = 335 nm, at λ = 450 nm, circular input polarization, and various slant angles. Chiral concentrations: 0%=blue, 1%=red, 3%=purple, 6%=yellow.

Fig. 5
Fig. 5

Photographs of the samples corresponding to the (a) chiral (purple) and (b) nonchiral (blue) curves, respectively. In both, the deflection angle between the zero- and first-orders is indicated in (a) the high-index substrate before the prism, and (b) in air without the prism.

Fig. 6
Fig. 6

Measured properties of several LC polymer Bragg PGs: (a) η−1, (b) FOV, (c) θG, (d) ϕ, and (e) Λ. Colors correspond to the curves and chiral concentrations in Fig. 4.

Fig. 7
Fig. 7

Spectral response of two LC polymer Bragg PGs, nonchiral (blue) and 3% chiral (purple). The η0 curve was measured and used to estimate η 1 e s t = 100 η 0.

Fig. 8
Fig. 8

Measured polarization response of two LC polymer Bragg PGs, nonchiral (blue) and 3% chiral (purple): (a) efficiencies as input polarization is varied by rotating a quarterwave (QW), and (b) output polarization angles (orientation ψ, ellipticity χ) of both orders in Fig. 5.

Fig. 9
Fig. 9

Measured efficiencies for a slanted (purple) LC polymer Bragg PG when TIR of the first-order wave leads to waveguiding and multiple interactions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| sin θ B | = λ / 2 n ¯ Λ .
Φ ( x , z ) = π x / Λ x + ϕ z / d ,
tan θ G = ϕ Λ x / d π .
sin ( sin 1 ( ( n i n / n ¯ ) sin θ P ) θ G ) = sin θ B ,
n o u t sin θ m = m λ / Λ x + n i n sin θ i n ,

Metrics