Abstract

Optically-pumped SESAM-modelocked semiconductor disk lasers have become interesting ultrafast lasers with gigahertz pulse repetition rates, high average power and adjustable lasing wavelength. It is well established that colliding pulse modelocking (CPM) can generate both shorter pulses and improved stability. These improvements however typically come at the expense of a more complex ring cavity and two output beams. So far similar modelocking results have been obtained with CPM vertical external-cavity surface-emitting lasers (VECSELs) and with SESAM-modelocked VECSELs or modelocked integrated external-cavity surface-emitting lasers (MIXSELs) in a linear cavity. However coherent beam combining of the two output beams of a CPM VECSEL could result in a significantly higher peak power. This is interesting for example for applications in biomedical microscopy and frequency metrology. Here we demonstrate with a more detailed noise analysis that for both output beams of a CPM VECSEL the pulse repetition rates and the carrier envelope offset frequencies are locked to each other. In contrast to standard SESAM-modelocked VECSELs in a linear cavity, we only have been able to actively stabilize the pulse repetition rate of the CPM VECSEL by cavity length control and not by pump-power control. Furthermore, a first coherent beam combining experiment of the two output beams is demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization

Sandro M. Link, Alexander Klenner, and Ursula Keller
Opt. Express 24(3) 1889-1902 (2016)

Dual-comb modelocked laser

Sandro M. Link, Alexander Klenner, Mario Mangold, Christian A. Zaugg, Matthias Golling, Bauke W. Tilma, and Ursula Keller
Opt. Express 23(5) 5521-5531 (2015)

Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL)

Mario Mangold, Valentin J. Wittwer, Christian A. Zaugg, Sandro M. Link, 
Matthias Golling, Bauke W. Tilma, and Ursula Keller
Opt. Express 21(21) 24904-24911 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking,” Appl. Phys. Lett. 38(9), 617–619 (1981).
    [Crossref]
  2. G. H. C. New, “Modelocking of quasi-continuous lasers,” Opt. Commun. 6(2), 188–192 (1972).
    [Crossref]
  3. J. A. Valdmanis and R. L. Fork, “Design Considerations for a Femtosecond Pulse Laser Balancing Self Phase Modulation, Group Velocity Dispersion, Saturable Absorption, and Saturable Gain,” IEEE J. Quantum Electron. 22(1), 112–118 (1986).
    [Crossref]
  4. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
    [Crossref]
  5. Y.-K. Chen and M. C. Wu, “Monolithic Colliding Pulse Modelocked Quantum Well Lasers,” IEEE J. Quantum Electron. 28(10), 2176–2185 (1992).
    [Crossref]
  6. A. Laurain, D. Marah, R. Rockmore, J. McInerney, J. Hader, A. R. Perez, W. Stolz, and J. V. Moloney, “Colliding pulse mode locking of vertical-externalcavity surface-emitting laser,” Optica 3(7), 781–784 (2016).
    [Crossref]
  7. A. Laurain, R. Rockmore, H. T. Chan, J. Hader, S. W. Koch, A. R. Perez, W. Stolz, and J. V. Moloney, “Pulse interactions in a colliding pulse mode-locked vertical external cavity surface emitting laser,” J. Opt. Soc. Am. B 34(2), 329–337 (2017).
    [Crossref]
  8. B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
  9. M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
    [Crossref]
  10. D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
    [Crossref]
  11. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
    [Crossref]
  12. C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
    [Crossref] [PubMed]
  13. M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
    [Crossref]
  14. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
    [Crossref] [PubMed]
  15. F. F. Voigt, F. Emaury, P. Bethge, D. Waldburger, S. M. Link, S. Carta, A. van der Bourg, F. Helmchen, and U. Keller, “Multiphoton in vivo imaging with a femtosecond semiconductor disk laser,” Biomed. Opt. Express 8(7), 3213–3231 (2017).
    [Crossref] [PubMed]
  16. A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
    [Crossref] [PubMed]
  17. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
    [Crossref]
  18. S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
    [Crossref] [PubMed]
  19. T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
    [Crossref]
  20. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [Crossref]

2017 (4)

2016 (5)

2015 (1)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

2014 (1)

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

2007 (2)

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

1992 (1)

Y.-K. Chen and M. C. Wu, “Monolithic Colliding Pulse Modelocked Quantum Well Lasers,” IEEE J. Quantum Electron. 28(10), 2176–2185 (1992).
[Crossref]

1991 (1)

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

1986 (1)

J. A. Valdmanis and R. L. Fork, “Design Considerations for a Femtosecond Pulse Laser Balancing Self Phase Modulation, Group Velocity Dispersion, Saturable Absorption, and Saturable Gain,” IEEE J. Quantum Electron. 22(1), 112–118 (1986).
[Crossref]

1981 (1)

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking,” Appl. Phys. Lett. 38(9), 617–619 (1981).
[Crossref]

1980 (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

1972 (1)

G. H. C. New, “Modelocking of quasi-continuous lasers,” Opt. Commun. 6(2), 188–192 (1972).
[Crossref]

Alfieri, C. G. E.

Baker, J. T.

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

Bellancourt, A.-R.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Benham, V.

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

Bethge, P.

Carta, S.

Chan, H. T.

Chen, Y. K.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Chen, Y.-K.

Y.-K. Chen and M. C. Wu, “Monolithic Colliding Pulse Modelocked Quantum Well Lasers,” IEEE J. Quantum Electron. 28(10), 2176–2185 (1992).
[Crossref]

Chin, M. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Eisenstein, G.

Emaury, F.

Fedorova, K. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Fork, R. L.

J. A. Valdmanis and R. L. Fork, “Design Considerations for a Femtosecond Pulse Laser Balancing Self Phase Modulation, Group Velocity Dispersion, Saturable Absorption, and Saturable Gain,” IEEE J. Quantum Electron. 22(1), 112–118 (1986).
[Crossref]

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking,” Appl. Phys. Lett. 38(9), 617–619 (1981).
[Crossref]

Gaafar, M. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Gaeta, A. L.

Gini, E.

Golling, M.

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
[Crossref] [PubMed]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Greene, B. I.

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking,” Appl. Phys. Lett. 38(9), 617–619 (1981).
[Crossref]

Hader, J.

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Helmchen, F.

Johnson, A. R.

Keller, U.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

F. F. Voigt, F. Emaury, P. Bethge, D. Waldburger, S. M. Link, S. Carta, A. van der Bourg, F. Helmchen, and U. Keller, “Multiphoton in vivo imaging with a femtosecond semiconductor disk laser,” Biomed. Opt. Express 8(7), 3213–3231 (2017).
[Crossref] [PubMed]

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
[Crossref] [PubMed]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Klenner, A.

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

Koch, M.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Koch, S. W.

Lamont, M. R. E.

Laurain, A.

Link, S. M.

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
[Crossref] [PubMed]

F. F. Voigt, F. Emaury, P. Bethge, D. Waldburger, S. M. Link, S. Carta, A. van der Bourg, F. Helmchen, and U. Keller, “Multiphoton in vivo imaging with a femtosecond semiconductor disk laser,” Biomed. Opt. Express 8(7), 3213–3231 (2017).
[Crossref] [PubMed]

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
[Crossref] [PubMed]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

Lipson, M.

Logan, R. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Lu, C. A.

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

Luke, K.

Maas, D. J. H. C.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Mangold, M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

Marah, D.

Mayer, A. S.

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

McInerney, J.

Moloney, J. V.

New, G. H. C.

G. H. C. New, “Modelocking of quasi-continuous lasers,” Opt. Commun. 6(2), 188–192 (1972).
[Crossref]

Okawachi, Y.

Perez, A. R.

Pilkington, D.

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

Rafailov, E. U.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Rahimi-Iman, A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Rockmore, R.

Rudin, B.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Sanchez, A. D.

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

Shank, C. V.

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking,” Appl. Phys. Lett. 38(9), 617–619 (1981).
[Crossref]

Shay, T. M.

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Stolz, W.

Südmeyer, T.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Tanbun-Ek, T.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Tilma, B. W.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

Unold, H. J.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Valdmanis, J. A.

J. A. Valdmanis and R. L. Fork, “Design Considerations for a Femtosecond Pulse Laser Balancing Self Phase Modulation, Group Velocity Dispersion, Saturable Absorption, and Saturable Gain,” IEEE J. Quantum Electron. 22(1), 112–118 (1986).
[Crossref]

van der Bourg, A.

Voigt, F. F.

Waldburger, D.

Wu, M. C.

Y.-K. Chen and M. C. Wu, “Monolithic Colliding Pulse Modelocked Quantum Well Lasers,” IEEE J. Quantum Electron. 28(10), 2176–2185 (1992).
[Crossref]

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Zaugg, C. A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

Adv. Opt. Photonics (1)

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Appl. Phys. B (2)

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Appl. Phys. Lett. (2)

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking,” Appl. Phys. Lett. 38(9), 617–619 (1981).
[Crossref]

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (2)

Y.-K. Chen and M. C. Wu, “Monolithic Colliding Pulse Modelocked Quantum Well Lasers,” IEEE J. Quantum Electron. 28(10), 2176–2185 (1992).
[Crossref]

J. A. Valdmanis and R. L. Fork, “Design Considerations for a Femtosecond Pulse Laser Balancing Self Phase Modulation, Group Velocity Dispersion, Saturable Absorption, and Saturable Gain,” IEEE J. Quantum Electron. 22(1), 112–118 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007).
[Crossref]

IEEE Photonics J. (1)

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).

Opt. Commun. (2)

G. H. C. New, “Modelocking of quasi-continuous lasers,” Opt. Commun. 6(2), 188–192 (1972).
[Crossref]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Opt. Express (3)

Optica (2)

Science (1)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Colliding pulse modelocked (CPM) VECSEL. The VECSEL chip is optically pumped by a cw 808-nm diode laser array. The ring cavity enables two pulses propagating in opposite directions. Stable CPM is obtained when the cavity length between the VECSEL chip and the SESAM (LV-S) is a quarter of the total cavity roundtrip length. OC, output coupler; HR, high reflector.
Fig. 2
Fig. 2 CPM VECSEL modelocking results for the two output beams: beam1 (red) and beam2 (blue). a) The optical spectrum is identical for both beams. b) Second harmonic autocorrelations show for each beam a pulse duration of 780 fs. c) Microwave spectrum measured over the full span of the microwave spectrum analyzer with a resolution bandwidth (RBW) of 30 kHz. d) Microwave spectrum zoomed in around the first harmonic with a span of 10 MHz and a RBW of 1 kHz confirms that both beams have the same pulse repetition frequency.
Fig. 3
Fig. 3 Phase noise measurements of the pulse repetition frequencies of the two output beams from the CPM VECSEL. If the pulse repetition frequency of beam1 is actively stabilized by controlling the cavity roundtrip time, the noise is drastically reduced for both beams simultaneously, confirming that the two pulse repetition frequencies are locked with CPM. Note that it was not possible to obtain the same stabilization by controlling the pump power.
Fig. 4
Fig. 4 Locked carrier envelope offset (CEO) frequencies of the two output beams from the CPM VECSEL: a) Setup to combine both beams with temporal overlap. BS, beams splitter; PD, photodetector; MSA microwave spectrum analyzer. b) The microwave spectrum shows no relative CEO beat frequency, maybe indicating that both CEO frequencies are identical. c) This is confirmed by shifting the frequency of beam2 with an acousto-optic modulator (AOM) by 60 MHz and again combining the two beams with temporal overlap. d) CEO beat frequency is detected in the microwave spectrum at 60 MHz (red line) which is stronger than the peak coming from the radio frequency driver of the AOM that is also present without temporal overlap (blue line). e) Magnification of the microwave spectrum around the CEO beat frequency.
Fig. 5
Fig. 5 Long-term CEO frequency fluctuations of the two output beams of the CPM VECSEL: a) Setup to detect the CEO frequency fluctuations of both beams simultaneously, by beating each comb with a narrow linewidth laser. FC, fiber coupling; PD photodetector. b) The interference between each comb of the VECSEL and the narrow linewidth laser generate a beat frequency, whose fluctuations are equal to the fluctuations of the CEO frequency of the VECSEL comb. Since we only want to observe, if both CEO frequencies fluctuate identically, we can ignore the fluctuations due to the pulse repetition frequency since we already confirmed that they are intrinsically locked with CPM. c) The perfectly synchronized fluctuations of the two beat frequencies are measured over 20 s with a gate time of 5 µs. Due to the calculation time of the Fourier transformation, the time between two measurements is 37 ms.
Fig. 6
Fig. 6 Proof-of-principle experiment for coherent beam combining of the two output beams from the CPM VECSEL. a) Both beams are coherently combined and focused into a 20-mm long lithium triborate (LBO) crystal to generate green light through second harmonic generation. PD, photodetector; BS, beam splitter. b) The generated green light is measured with a PD and a fast oscilloscope for 5 different cases: (I): beam2 is blocked and only half of the power of beam1 arrives at the LBO crystal. (II): beam1 is blocked and only half of the power of beam2 arrives at the crystal. (III): half of the power of both beams arrive at the crystal without temporal overlap which is simply a incoherent superposition of the two intensities. (IV): both beams are coherently combined and interfere constructive and destructive. (V): the coherently combined signal is stabilized by changing the path-length difference with a with a feedback loop and a piezo actuator.
Fig. 7
Fig. 7 Intensity noise of the second harmonic generation (SHG), calculated via Fourier transformation from the time-dependent power signal measured in [Fig. 6(b)] for the five different cases. The mechanical fluctuations changing the beam path difference in case IV show a bandwidth of ≈1 kHz before reaching the noise floor. They can be stabilized with a feedback loop and a piezo (case V).

Metrics