Abstract

Recently it was shown that sinusoidal frequency scan optical frequency domain reflectometry (SFS-OFDR) can achieve remarkable performance in applications of distributed acoustic sensing (DAS). The main advantage of SFS-OFDR is the simplicity with which highly accurate sinusoidal frequency scans can be generated (in comparison with linear frequency scans). One drawback of SFS-OFDR has been the computationally intensive algorithm it required for processing of the measured backscatter data. The complexity of this algorithm was O(N2) where N is the number of backscatter samples. In this work a fast processing algorithm for SFS-OFDR, with computational complexity O (N log N), is derived and its performance and limitations are studied in details. The new algorithm facilitated highly sensitive DAS operation over a sensing fiber of 64km, with 6.5m resolution and scan rate of 400Hz. The high sensitivity of the system was demonstrated in a field trial where it successfully detected human footsteps near the end of the fiber with excellent SNR.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR)

Eyal Leviatan and Avishay Eyal
Opt. Express 23(26) 33318-33334 (2015)

Dynamic optical frequency domain reflectometry

Dror Arbel and Avishay Eyal
Opt. Express 22(8) 8823-8830 (2014)

OFDR with double interrogation for dynamic quasi-distributed sensing

Adva Bar Am, Dror Arbel, and Avishay Eyal
Opt. Express 22(3) 2299-2308 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  2. A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
    [Crossref] [PubMed]
  3. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  4. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref] [PubMed]
  5. Y. Lu, T. Zhu, L. Chen, X. Bao, and S. Member, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).
  6. X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR,” Opt. Express 19(20), 19122–19128 (2011).
    [Crossref] [PubMed]
  7. H. Barfuss and E. Brinkmeyer, “Modified Optical Frequency Domain Reflectometry with High Spatial Resolution for Components of Integrated Optic Systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
    [Crossref]
  8. K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator,” IEEE Photonics Technol. Lett. 7(7), 804–806 (1995).
    [Crossref]
  9. R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
  10. X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method,” Opt. Lett. 32(22), 3227–3229 (2007).
    [Crossref] [PubMed]
  11. E. Leviatan and A. Eyal, “High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR),” Opt. Express 23(26), 33318–33334 (2015).
    [Crossref] [PubMed]
  12. L. Shiloh and A. Eyal, “Fast Sinusoidal Frequency Scan OFDR for Long Distance Distributed Acoustic Sensing,” Proc. SPIE 10323, 25 (2017).
  13. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [Crossref]
  14. H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett. 41(24), 5648–5651 (2016).
    [Crossref] [PubMed]
  15. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 85204 (2013).
    [Crossref]
  16. A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42, 290–293 (2017).

2017 (2)

L. Shiloh and A. Eyal, “Fast Sinusoidal Frequency Scan OFDR for Long Distance Distributed Acoustic Sensing,” Proc. SPIE 10323, 25 (2017).

A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42, 290–293 (2017).

2016 (2)

H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett. 41(24), 5648–5651 (2016).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 85204 (2013).
[Crossref]

2012 (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2007 (1)

2005 (1)

1995 (1)

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator,” IEEE Photonics Technol. Lett. 7(7), 804–806 (1995).
[Crossref]

1994 (1)

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Lightwave Technol. 12, 1622–1630 (1994).

1989 (1)

H. Barfuss and E. Brinkmeyer, “Modified Optical Frequency Domain Reflectometry with High Spatial Resolution for Components of Integrated Optic Systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Arbel, D.

Bao, X.

Barfuss, H.

H. Barfuss and E. Brinkmeyer, “Modified Optical Frequency Domain Reflectometry with High Spatial Resolution for Components of Integrated Optic Systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 85204 (2013).
[Crossref]

Brinkmeyer, E.

H. Barfuss and E. Brinkmeyer, “Modified Optical Frequency Domain Reflectometry with High Spatial Resolution for Components of Integrated Optic Systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

Chen, L.

Choi, K. N.

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Eyal, A.

Fan, X.

Gabai, H.

Gilgen, H. H.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Lightwave Technol. 12, 1622–1630 (1994).

Gisin, N.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Lightwave Technol. 12, 1622–1630 (1994).

Horiguchi, T.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator,” IEEE Photonics Technol. Lett. 7(7), 804–806 (1995).
[Crossref]

Ito, F.

Juarez, J. C.

Koshikiya, Y.

Koyamada, Y.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator,” IEEE Photonics Technol. Lett. 7(7), 804–806 (1995).
[Crossref]

Leviatan, E.

Lu, Y.

Maier, E. W.

Masoudi, A.

A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42, 290–293 (2017).

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 85204 (2013).
[Crossref]

Member, S.

Newson, T. P.

A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42, 290–293 (2017).

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 85204 (2013).
[Crossref]

Passy, R.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Lightwave Technol. 12, 1622–1630 (1994).

Shiloh, L.

L. Shiloh and A. Eyal, “Fast Sinusoidal Frequency Scan OFDR for Long Distance Distributed Acoustic Sensing,” Proc. SPIE 10323, 25 (2017).

Shimizu, K.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator,” IEEE Photonics Technol. Lett. 7(7), 804–806 (1995).
[Crossref]

Taylor, H. F.

Tsuji, K.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator,” IEEE Photonics Technol. Lett. 7(7), 804–806 (1995).
[Crossref]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

von der Weid, J. P.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Lightwave Technol. 12, 1622–1630 (1994).

Zhu, T.

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator,” IEEE Photonics Technol. Lett. 7(7), 804–806 (1995).
[Crossref]

J. Lightwave Technol. (4)

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Lightwave Technol. 12, 1622–1630 (1994).

Y. Lu, T. Zhu, L. Chen, X. Bao, and S. Member, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
[Crossref]

H. Barfuss and E. Brinkmeyer, “Modified Optical Frequency Domain Reflectometry with High Spatial Resolution for Components of Integrated Optic Systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 85204 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

L. Shiloh and A. Eyal, “Fast Sinusoidal Frequency Scan OFDR for Long Distance Distributed Acoustic Sensing,” Proc. SPIE 10323, 25 (2017).

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 SFS-OFDR experimental setup.
Fig. 2
Fig. 2 Simulation of a 64km fiber interrogated by SFS-OFDR. The expression in Eq. (3) is calculated for different processing windows. It yields a periodic output out of which a single period is plotted. The complex scatter profile of the fiber, including the end-reflector, is seen in the range 0-64km. This is the useful part of the period (denoted with solid arrow). The rest of the period (denoted with dashed arrow) contains – only artifacts which are gradually approaching the fiber scatter profile as the processing window increases.
Fig. 3
Fig. 3 (a) Normalized spatial resolution as a function of fiber length for different scan rates for 15% processing window. Each graph ends at L max when the sidebands start to interfere with the backscatter response. (b) The table presents the L ref and L max for each f r .
Fig. 4
Fig. 4 (a) Maximum attainable processing window as a function of fiber length for various scan rates. (b) The table presents the normalized spatial resolution at the maximum processing window width.
Fig. 5
Fig. 5 Fiber reflection profile of a ~64km fiber, averaged over 15msec, achieved via fast-SFS-OFDR at a scan rate of 400Hz.
Fig. 6
Fig. 6 (a) Sensing fibers of various lengths were connected to the interrogator (Fig. 1). (b) Spatial resolution as a function of length: experimental data (red), theory (dashed gray) and simulation (blue).
Fig. 7
Fig. 7 Tel-Aviv University “Optical Garden” for DAS experiments
Fig. 8
Fig. 8 DAS experiment: backscatter power of a 64km sensing fiber as a function of time
Fig. 9
Fig. 9 DAS experiment: zoom into the boxed section in Fig. 8. (a) Power (effect of footsteps is highlighted in a black ellipse) (b) Differential phase – the footsteps are clearly visible (band-pass filtered in the range of 5 to 65Hz).
Fig. 10
Fig. 10 Footsteps at 63.85km: zoom-in on a 3 seconds signal with comparison to audio recorded by the walking subject

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

V( t )=C 0 L ρ ˜ ( z' )exp{ i πΔF ω r [ cos( ω r ( t 2z' v g ) )cos( ω r t ) ] }dz'
ρ ˜ ( z )= T/2 T/2 V( t )exp{ iA[ cos( ω r ( tτ ) )cos( ω r t ) ] }dt
ρ ˜ ( z m )FFT { ( i ) n J n ( A )IFFT { W T ( t j ) V ˜ ( t j ) } n } m
exp{ iAcos[ ω r ( tτ ) ] }= n= ( i ) n J n ( A )exp{ in ω r ( tτ ) }
ρ ˜ ( z )= n= ( i ) n J n ( A )exp( in ω r τ ) T/2 T/2 V ˜ ( t )exp( in ω r t )dt
T/2 T/2 V ˜ ( t )exp( in ω r t )dt = π/ ω r π/ ω r W T ( t ) V ˜ ( t )exp( in ω r t )dt = v n
v n =bIFFT{ W T ( t j ) V ˜ ( t j ) }
ρ ˜ ( z )= n= ( i ) n J n ( A ) v n exp[ in ω r τ( z ) ]
ρ ˜ ( z m )= n= ( i ) n J n ( A ) v n exp( i2π nm M )=FFT{ ( i ) n J n ( A ) v n }

Metrics