Abstract

We report on a theoretical and experimental study of the energy transfer between an optical evanescent wave, propagating in vacuum along the planar boundary of a dielectric material, and a beam of sub-relativistic electrons. The evanescent wave is excited via total internal reflection in the dielectric by an infrared (λ = 2 μm) femtosecond laser pulse. By matching the electron propagation velocity to the phase velocity of the evanescent wave, energy modulation of the electron beam is achieved. A maximum energy gain of 800 eV is observed, corresponding to the absorption of more than 1000 photons by one electron. The maximum observed acceleration gradient is 19 ± 2 MeV/m. The striking advantage of this scheme is that a structuring of the acceleration element’s surface is not required, enabling the use of materials with high laser damage thresholds that are difficult to nano-structure, such as SiC, Al2O3 or CaF2.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-intensity optical slow-wave structure for direct laser electron acceleration

Andrew G. York, B. D. Layer, J. P. Palastro, T. M. Antonsen, and H. M. Milchberg
J. Opt. Soc. Am. B 25(7) B137-B146 (2008)

Relativistic electron acceleration by mJ-class kHz lasers normally incident on liquid targets

Scott Feister, Drake R. Austin, John T. Morrison, Kyle D. Frische, Chris Orban, Gregory Ngirmang, Abraham Handler, Joseph R. H. Smith, Mark Schillaci, Jay A. LaVerne, Enam A. Chowdhury, R. R. Freeman, and W. M. Roquemore
Opt. Express 25(16) 18736-18750 (2017)

Electron acceleration by subcycle pulsed focused vector beams

Xun-ming Cai, Jing-yun Zhao, Qiang Lin, and Jiao-lian Luo
J. Opt. Soc. Am. B 33(2) 158-164 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
    [Crossref]
  2. C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
    [Crossref]
  3. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
    [Crossref]
  4. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
    [PubMed]
  5. W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
    [Crossref] [PubMed]
  6. R. Palmer, “Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet,” J. Appl. Phys. 43(7), 3014–3023 (1972).
    [Crossref]
  7. E. D. Courant, C. Pellegrini, and W. Zakowicz, “High-energy inverse free-electron-laser accelerator,” Phys. Rev. A Gen. Phys. 32(5), 2813–2823 (1985).
    [Crossref] [PubMed]
  8. A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847–2854 (1999).
    [Crossref]
  9. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
    [Crossref] [PubMed]
  10. J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Phys. Rev. Lett. 111(13), 134803 (2013).
    [Crossref] [PubMed]
  11. R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
    [Crossref]
  12. K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Opt. Lett. 40(18), 4344–4347 (2015).
    [Crossref] [PubMed]
  13. B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902–906 (2009).
    [Crossref] [PubMed]
  14. P. Baum and A. H. Zewail, “4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366(1-3), 2–8 (2009).
    [Crossref]
  15. L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
    [Crossref] [PubMed]
  16. M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
    [Crossref] [PubMed]
  17. M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
    [Crossref] [PubMed]
  18. F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, “Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields,” Nano Lett. 10(5), 1859–1863 (2010).
    [Crossref] [PubMed]
  19. A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
    [Crossref] [PubMed]
  20. K. E. Echternkamp, A. Feist, S. Schäfer, and C. Ropers, “Ramsey-type phase control of free-electron beams,” Nat. Phys. 12(11), 1000–1004 (2016).
    [Crossref]
  21. J. D. Lawson, “Lasers and accelerators,” IEEE Trans. Nucl. Sci. 26(3), 4217–4219 (1979).
    [Crossref]
  22. S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron microscopy (PINEM): theoretical and experimental,” New J. Phys. 12(12), 123028 (2010).
    [Crossref]
  23. J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations,” J. Phys. At. Mol. Opt. Phys. 47(23), 234004 (2014).
    [Crossref]
  24. B. R. Frandsen, S. A. Glasgow, and J. B. Peatross, “Acceleration of free electrons in a symmetric evanescent wave,” Laser Phys. 16(9), 1311–1314 (2006).
    [Crossref]
  25. L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
    [Crossref]
  26. E. Hecht, Optics (2nd ed., Addison Wesley, 1987).
  27. J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part,” Phys. Rev. Spec. Top. Accel. Beams 17(2), 021301 (2014).
    [Crossref]
  28. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  29. Lumerical Solutions, Inc., “FDTD Solutions,” https://www.lumerical.com/tcad-products/fdtd/ .
  30. H. A. H. Boot and R. B. R.-S. Harvie, “Charged Particles in a Non-uniform Radio-frequency Field,” Nature 180, 1187 (1957).
    [Crossref]
  31. J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, https://arXiv:1604.07684 (2016).
  32. T. Plettner and R. L. Byer, “Proposed dielectric-based microstructure laser-driven undulator,” Phys. Rev. Spec. Top. Accel. Beams 11(3), 030704 (2008).
    [Crossref]
  33. H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, Design of racetrack ring resonator based dielectric laser accelerators,” https://arXiv:1701.08945 (2017).

2017 (1)

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (4)

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Opt. Lett. 40(18), 4344–4347 (2015).
[Crossref] [PubMed]

2014 (4)

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part,” Phys. Rev. Spec. Top. Accel. Beams 17(2), 021301 (2014).
[Crossref]

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations,” J. Phys. At. Mol. Opt. Phys. 47(23), 234004 (2014).
[Crossref]

2013 (3)

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Phys. Rev. Lett. 111(13), 134803 (2013).
[Crossref] [PubMed]

2010 (2)

F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, “Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields,” Nano Lett. 10(5), 1859–1863 (2010).
[Crossref] [PubMed]

S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron microscopy (PINEM): theoretical and experimental,” New J. Phys. 12(12), 123028 (2010).
[Crossref]

2009 (2)

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902–906 (2009).
[Crossref] [PubMed]

P. Baum and A. H. Zewail, “4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366(1-3), 2–8 (2009).
[Crossref]

2008 (1)

T. Plettner and R. L. Byer, “Proposed dielectric-based microstructure laser-driven undulator,” Phys. Rev. Spec. Top. Accel. Beams 11(3), 030704 (2008).
[Crossref]

2006 (2)

B. R. Frandsen, S. A. Glasgow, and J. B. Peatross, “Acceleration of free electrons in a symmetric evanescent wave,” Laser Phys. 16(9), 1311–1314 (2006).
[Crossref]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

1999 (1)

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847–2854 (1999).
[Crossref]

1985 (1)

E. D. Courant, C. Pellegrini, and W. Zakowicz, “High-energy inverse free-electron-laser accelerator,” Phys. Rev. A Gen. Phys. 32(5), 2813–2823 (1985).
[Crossref] [PubMed]

1984 (1)

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

1979 (2)

J. D. Lawson, “Lasers and accelerators,” IEEE Trans. Nucl. Sci. 26(3), 4217–4219 (1979).
[Crossref]

T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[Crossref]

1972 (1)

R. Palmer, “Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet,” J. Appl. Phys. 43(7), 3014–3023 (1972).
[Crossref]

1957 (1)

H. A. H. Boot and R. B. R.-S. Harvie, “Charged Particles in a Non-uniform Radio-frequency Field,” Nature 180, 1187 (1957).
[Crossref]

Apolonski, A.

J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part,” Phys. Rev. Spec. Top. Accel. Beams 17(2), 021301 (2014).
[Crossref]

Asenjo-Garcia, A.

F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, “Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields,” Nano Lett. 10(5), 1859–1863 (2010).
[Crossref] [PubMed]

Bane, K.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Barwick, B.

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902–906 (2009).
[Crossref] [PubMed]

Bataviciute, G.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Baum, P.

P. Baum and A. H. Zewail, “4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366(1-3), 2–8 (2009).
[Crossref]

Benedetti, C.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

Bernstein, A. C.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Boot, H. A. H.

H. A. H. Boot and R. B. R.-S. Harvie, “Charged Particles in a Non-uniform Radio-frequency Field,” Nature 180, 1187 (1957).
[Crossref]

Borger, T.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Breuer, J.

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations,” J. Phys. At. Mol. Opt. Phys. 47(23), 234004 (2014).
[Crossref]

J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part,” Phys. Rev. Spec. Top. Accel. Beams 17(2), 021301 (2014).
[Crossref]

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Phys. Rev. Lett. 111(13), 134803 (2013).
[Crossref] [PubMed]

Bulanov, S. S.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

Byer, R. L.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Opt. Lett. 40(18), 4344–4347 (2015).
[Crossref] [PubMed]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

T. Plettner and R. L. Byer, “Proposed dielectric-based microstructure laser-driven undulator,” Phys. Rev. Spec. Top. Accel. Beams 11(3), 030704 (2008).
[Crossref]

Carbone, F.

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

Ceballos, A.

Chang, C.-M.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Chang, Y.-Y.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Colby, E. R.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Commandré, M.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Courant, E. D.

E. D. Courant, C. Pellegrini, and W. Zakowicz, “High-energy inverse free-electron-laser accelerator,” Phys. Rev. A Gen. Phys. 32(5), 2813–2823 (1985).
[Crossref] [PubMed]

Cowan, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Daniels, J.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

Dawson, J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Dawson, J. M.

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[Crossref]

Deng, H.

Ditmire, T.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Donovan, M.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Douti, D.-B.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Dowell, D. H.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Downer, M. C.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Dyer, G.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Echternkamp, K. E.

K. E. Echternkamp, A. Feist, S. Schäfer, and C. Ropers, “Ramsey-type phase control of free-electron beams,” Nat. Phys. 12(11), 1000–1004 (2016).
[Crossref]

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

England, R. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Esarey, E.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Fazel, N.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Feist, A.

K. E. Echternkamp, A. Feist, S. Schäfer, and C. Ropers, “Ramsey-type phase control of free-electron beams,” Nat. Phys. 12(11), 1000–1004 (2016).
[Crossref]

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

Flannigan, D. J.

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902–906 (2009).
[Crossref] [PubMed]

Forslund, D. W.

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

Frandsen, B. R.

B. R. Frandsen, S. A. Glasgow, and J. B. Peatross, “Acceleration of free electrons in a symmetric evanescent wave,” Laser Phys. 16(9), 1311–1314 (2006).
[Crossref]

Gai, W.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Gallais, L.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, “Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields,” Nano Lett. 10(5), 1859–1863 (2010).
[Crossref] [PubMed]

Gaul, E.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Geddes, C. G. R.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Glasgow, S. A.

B. R. Frandsen, S. A. Glasgow, and J. B. Peatross, “Acceleration of free electrons in a symmetric evanescent wave,” Laser Phys. 16(9), 1311–1314 (2006).
[Crossref]

Gonsalves, A. J.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Graf, R.

J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part,” Phys. Rev. Spec. Top. Accel. Beams 17(2), 021301 (2014).
[Crossref]

Harris, J. S.

Hartl, I.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

Harvie, R. B. R.-S.

H. A. H. Boot and R. B. R.-S. Harvie, “Charged Particles in a Non-uniform Radio-frequency Field,” Nature 180, 1187 (1957).
[Crossref]

Henderson, W.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Holzwarth, R.

Hommelhoff, P.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part,” Phys. Rev. Spec. Top. Accel. Beams 17(2), 021301 (2014).
[Crossref]

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations,” J. Phys. At. Mol. Opt. Phys. 47(23), 234004 (2014).
[Crossref]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Phys. Rev. Lett. 111(13), 134803 (2013).
[Crossref] [PubMed]

Hoogland, H.

Hooker, S. M.

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Huang, Y.-C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Jing, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Joshi, C.

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

Katsouleas, T.

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

Khudik, V.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Kindel, J. M.

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

Kociak, M.

F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, “Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields,” Nano Lett. 10(5), 1859–1863 (2010).
[Crossref] [PubMed]

Korzekwa, R.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Kozák, M.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

Lawson, J. D.

J. D. Lawson, “Lasers and accelerators,” IEEE Trans. Nucl. Sci. 26(3), 4217–4219 (1979).
[Crossref]

Leedle, K. J.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Opt. Lett. 40(18), 4344–4347 (2015).
[Crossref] [PubMed]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Leemans, W. P.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, Z.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Lin, M.

S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron microscopy (PINEM): theoretical and experimental,” New J. Phys. 12(12), 123028 (2010).
[Crossref]

Lummen, T. T. A.

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

Mao, H.-S.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

Martinez, M.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

McGuinness, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

McNeur, J.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations,” J. Phys. At. Mol. Opt. Phys. 47(23), 234004 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Melninkaitis, A.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Meyer-ter-Vehn, J.

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847–2854 (1999).
[Crossref]

Mittelberger, D. E.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

Mizrahi, A.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Montazeri, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Mori, W. B.

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

Murooka, Y.

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

Nagler, B.

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Nakamura, K.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Naranjo, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Ng, C.-K.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Noble, R. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Pai, C.-H.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Palmer, R.

R. Palmer, “Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet,” J. Appl. Phys. 43(7), 3014–3023 (1972).
[Crossref]

Palmer, R. B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Park, S. T.

S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron microscopy (PINEM): theoretical and experimental,” New J. Phys. 12(12), 123028 (2010).
[Crossref]

Pease, R. F.

Peatross, J. B.

B. R. Frandsen, S. A. Glasgow, and J. B. Peatross, “Acceleration of free electrons in a symmetric evanescent wave,” Laser Phys. 16(9), 1311–1314 (2006).
[Crossref]

Pellegrini, C.

E. D. Courant, C. Pellegrini, and W. Zakowicz, “High-energy inverse free-electron-laser accelerator,” Phys. Rev. A Gen. Phys. 32(5), 2813–2823 (1985).
[Crossref] [PubMed]

Peralta, E.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Peralta, E. A.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Piazza, L.

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

Plettner, T.

T. Plettner and R. L. Byer, “Proposed dielectric-based microstructure laser-driven undulator,” Phys. Rev. Spec. Top. Accel. Beams 11(3), 030704 (2008).
[Crossref]

Pukhov, A.

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847–2854 (1999).
[Crossref]

Pupka, E.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Quevedo, H.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Quiñonez, E.

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

Reed, B. W.

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

Ropers, C.

K. E. Echternkamp, A. Feist, S. Schäfer, and C. Ropers, “Ramsey-type phase control of free-electron beams,” Nat. Phys. 12(11), 1000–1004 (2016).
[Crossref]

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

Rosenzweig, J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Ruehl, A.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

Schachter, L.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Schäfer, S.

K. E. Echternkamp, A. Feist, S. Schäfer, and C. Ropers, “Ramsey-type phase control of free-electron beams,” Nat. Phys. 12(11), 1000–1004 (2016).
[Crossref]

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

Schauss, J.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

Schönenberger, N.

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, H. Hoogland, R. Holzwarth, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Transverse and longitudinal characterization of electron beams using interaction with optical near-fields,” Opt. Lett. 41(15), 3435–3438 (2016).
[Crossref] [PubMed]

Schroeder, C. B.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Schwartz, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Šciuka, M.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Sears, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Sheng, Z.-M.

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847–2854 (1999).
[Crossref]

Shvets, G.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Sirutkaitis, V.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Smalakys, L.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Solgaard, O.

Soong, K.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Sozer, E. B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Spencer, J. E.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Spinks, M.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Tajima, T.

T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[Crossref]

Tantawi, S.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Tóth, C.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

Travish, G.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Tsai, H.-E.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Vay, J.-L.

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

Walz, D.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Werner, G. R.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Wolf, S. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Wu, Z.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

Yalunin, S. V.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

Yi, S. A.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Yoder, R. B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Zakowicz, W.

E. D. Courant, C. Pellegrini, and W. Zakowicz, “High-energy inverse free-electron-laser accelerator,” Phys. Rev. A Gen. Phys. 32(5), 2813–2823 (1985).
[Crossref] [PubMed]

Zewail, A. H.

S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron microscopy (PINEM): theoretical and experimental,” New J. Phys. 12(12), 123028 (2010).
[Crossref]

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902–906 (2009).
[Crossref] [PubMed]

P. Baum and A. H. Zewail, “4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366(1-3), 2–8 (2009).
[Crossref]

Zgadzaj, R.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Zhang, X.

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

Chem. Phys. (1)

P. Baum and A. H. Zewail, “4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366(1-3), 2–8 (2009).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

J. D. Lawson, “Lasers and accelerators,” IEEE Trans. Nucl. Sci. 26(3), 4217–4219 (1979).
[Crossref]

J. Appl. Phys. (2)

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

R. Palmer, “Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet,” J. Appl. Phys. 43(7), 3014–3023 (1972).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations,” J. Phys. At. Mol. Opt. Phys. 47(23), 234004 (2014).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Laser Phys. (1)

B. R. Frandsen, S. A. Glasgow, and J. B. Peatross, “Acceleration of free electrons in a symmetric evanescent wave,” Laser Phys. 16(9), 1311–1314 (2006).
[Crossref]

Nano Lett. (1)

F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, “Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields,” Nano Lett. 10(5), 1859–1863 (2010).
[Crossref] [PubMed]

Nat. Commun. (3)

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).
[PubMed]

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
[Crossref] [PubMed]

M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).
[Crossref] [PubMed]

Nat. Phys. (2)

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006).
[Crossref]

K. E. Echternkamp, A. Feist, S. Schäfer, and C. Ropers, “Ramsey-type phase control of free-electron beams,” Nat. Phys. 12(11), 1000–1004 (2016).
[Crossref]

Nature (5)

H. A. H. Boot and R. B. R.-S. Harvie, “Charged Particles in a Non-uniform Radio-frequency Field,” Nature 180, 1187 (1957).
[Crossref]

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521(7551), 200–203 (2015).
[Crossref] [PubMed]

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311(5986), 525–529 (1984).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref] [PubMed]

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902–906 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron microscopy (PINEM): theoretical and experimental,” New J. Phys. 12(12), 123028 (2010).
[Crossref]

Opt. Lett. (2)

Phys. Plasmas (1)

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847–2854 (1999).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

E. D. Courant, C. Pellegrini, and W. Zakowicz, “High-energy inverse free-electron-laser accelerator,” Phys. Rev. A Gen. Phys. 32(5), 2813–2823 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[Crossref]

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113(24), 245002 (2014).
[Crossref] [PubMed]

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Phys. Rev. Lett. 111(13), 134803 (2013).
[Crossref] [PubMed]

Phys. Rev. Spec. Top. Accel. Beams (2)

T. Plettner and R. L. Byer, “Proposed dielectric-based microstructure laser-driven undulator,” Phys. Rev. Spec. Top. Accel. Beams 11(3), 030704 (2008).
[Crossref]

J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part,” Phys. Rev. Spec. Top. Accel. Beams 17(2), 021301 (2014).
[Crossref]

Rev. Mod. Phys. (1)

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86(4), 1337–1389 (2014).
[Crossref]

Other (4)

Lumerical Solutions, Inc., “FDTD Solutions,” https://www.lumerical.com/tcad-products/fdtd/ .

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, Design of racetrack ring resonator based dielectric laser accelerators,” https://arXiv:1701.08945 (2017).

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, https://arXiv:1604.07684 (2016).

E. Hecht, Optics (2nd ed., Addison Wesley, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Total internal reflection at the surface of the dielectric, which extends from negative y to y = 0. Electrons propagate from left to right along the surface with group velocity ve and interact with the evanescent wave propagating with phase velocity vph. Color bar: temporal snapshot of the longitudinal component of the electric field of light Ez calculated at the interface between silicon (n = 3.4) and vacuum for λ0 = 2 μm, θi = 60°. b) Dependence of the maximum acceleration factor Fmax = Ez(y = 0)/Ei on the electron velocity β = ve/c for various materials (germanium, silicon, diamond and fused silica) whose index of refraction is given in the inset.
Fig. 2
Fig. 2 a) Excitation of an optical evanescent wave by single refraction using a germanium prism. Colorscale: electric field component Ez calculated numerically using FDTD technique. b) SEM image of the silicon microstructure which serves for the excitation of an optical evanescent wave using two subsequent refractions of the laser beam (beam path in the ray optics approximation indicated by the red overlay and the black arrows).
Fig. 3
Fig. 3 Measured accelerated electron current as a function of the minimum energy gain for Ge (red squares) and Si (black circles). Independent numerical simulation results are shown as dashed curves. With an initial electron kinetic of Ek,in = 28.4 keV, the maximum energy gain equals 800 eV for germanium and 300 eV for silicon. The acceleration is stronger for germanium because of its higher refractive index and because of the coupling geometry with only single refraction of the driving beam.
Fig. 4
Fig. 4 Accelerated electron current (color scale) plotted on a log scale as a function of minimum energy gain and distance d between the electron beam center and the germanium sample surface. Inset: Dependence of the current of electrons with energy gain higher than 120 eV on the distance d (squares) plotted on log scale. The full red line shows the exponential fit to the data with decay length of Γ = 90 ± 10 nm, in fair agreement with the theoretical value of 105 nm. We conclude that the electrons are indeed accelerated with the evanescent surface field.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E t (y,z,t)=Re{ a E i ( nsin θ i e y i n 2 sin 2 θ i 1 e z )× exp[ ω c n 2 sin 2 θ i 1 y+i( ω c znsin θ i ωt+ φ 0 ) ] } B t (y,z,t)=Re{ a E i c exp[ ω c n 2 sin 2 θ i 1 y+i( ω c znsin θ i ωt+ φ 0 ) ] e x }, a= 2ncos θ i cos θ i in n 2 sin 2 θ i 1
d dt ( γ m e v e )= q e ( E + v × B ).
E k (φ)= E k0 +q v e E i (t)dt Re{ ia β 2 1 exp(iφ) }exp( ω c β 2 1 y ),
G max =q E imax | a | β 2 1 =q E imax F,
z deph = [ πβc E k ( E k m 0 c 2 +1 )( E k m 0 c 2 +2 ) 2ω G max ] 1/2 .
F =qRe[ iA β defl 2 1 sinα e x +( β defl 1 β defl )A e y iA β defl 2 1 cosα e z ] A=a E i exp[ ω c β defl 2 1 y+i( ω c znsin θ i ωt+ φ 0 ) ],

Metrics