Abstract

We study spin the Hall effect (SHE) of reflected light in a dielectric magneto-optical thin film of Ce1Y2Fe5O12 (Ce:YIG) with a double-negative (DNG) metamaterial substrate. The spin-dependent splitting expressions of left- and the right-handed circularly polarized (LHCP and RHCP) components in longitudinal, polar and transverse magneto-optical Kerr effect (MOKE) configurations are obtained. Meanwhile we first obtain the analytical expressions of the SHE shift of reflected light for three MOKE configurations by proper approximation. Owing to the enhancement of the MOKE by DNG metamaterial, the external magnetic field shows a large enhancement and modulation to spin-dependent splitting of reflected light. Based on simulation results, the influences of magnetic field direction and substrate material on the transverse centroid shifts of the reflected left- and right-handed circularly polarized light perpendicular to incident plane are analyzed. We find the maximum spin-dependent splitting between LHCP and RHCP components achieves about 9.2 μm and the maximum value of the magneto-optical spin Hall effect (MOSHE) shift reaches 9 μm in polar MOKE configuration. In order to make our results convincing we use a realizable DNG metamaterial with silver nanostructures as substrate to verify our conclusion. The DNG metamaterial provides a flexible method to manipulate and enhance SHE of light.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Jie Li and Tingting Tang, "Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate: erratum," Opt. Express 25, 24678-24678 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-20-24678

OSA Recommended Articles
Field-dependent magneto-optical Kerr effect spectroscopy applied to the magnetic component diagnosis of a rubrene/Ni system

Wen Li, Michael Fronk, Manfred Albrecht, Mechthild Franke, Dietrich R. T. Zahn, and Georgeta Salvan
Opt. Express 22(15) 18454-18463 (2014)

Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon- and mu-near-zero metamaterial slab

Tingting Tang, Jie Li, Li Luo, Ping Sun, and Yanfen Zhang
Opt. Express 25(3) 2347-2354 (2017)

Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting

Xinxing Zhou and Xiaohui Ling
Opt. Express 24(3) 3025-3036 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
    [Crossref] [PubMed]
  2. H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
    [Crossref]
  3. T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6(1), 30762 (2016).
    [Crossref] [PubMed]
  4. T. Tang, J. Li, L. Luo, P. Sun, and Y. Zhang, “Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon- and mu-near-zero metamaterial slab,” Opt. Express 25(3), 2347–2354 (2017).
    [Crossref]
  5. T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, “Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial,” Opt. Express 24(24), 28113–28121 (2016).
    [Crossref] [PubMed]
  6. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  7. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
    [Crossref] [PubMed]
  8. N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
    [Crossref] [PubMed]
  9. J. M. Ménard, A. E. Mattacchione, M. Betz, and H. M. van Driel, “Imaging the spin Hall effect of light inside semiconductors via absorption,” Opt. Lett. 34(15), 2312–2314 (2009).
    [Crossref] [PubMed]
  10. J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
    [Crossref]
  11. X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
    [Crossref]
  12. L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).
  13. X. Zhou, X. Lin, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
    [Crossref]
  14. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  15. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).
  16. W. Zeper, F. Greidanus, and P. Carcia, “Evaporated Co/Pt layered structures for magneto-optical recording,” IEEE Trans. Magn. 25(5), 3764–3766 (1989).
    [Crossref]
  17. N. Imamura, S. Tanaka, F. Tanaka, and Y. Nagao, “Magneto-optical recording on amorphous films,” IEEE Trans. Magn. 21(5), 1607–1612 (1985).
    [Crossref]
  18. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
    [Crossref]
  19. L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  20. Y. Shoji and T. Mizumoto, “Ultra-wideband design of waveguide magneto-optical isolator operating in 1.31 µm and 1.55 µm band,” Opt. Express 15(2), 639–645 (2007).
    [Crossref] [PubMed]
  21. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
    [Crossref]
  22. V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
    [Crossref] [PubMed]
  23. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
    [Crossref] [PubMed]
  24. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
    [Crossref]
  25. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
    [Crossref] [PubMed]
  26. Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, “Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures,” J. Opt. Soc. Am. B 28(9), 2115–2122 (2011).
    [Crossref]
  27. N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
    [Crossref]
  28. V. Belotelov, D. Bykov, L. Doskolovich, A. Kalish, and A. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
    [Crossref]
  29. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
    [Crossref] [PubMed]
  30. X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
    [Crossref]
  31. Y. Dong and X. Zhang, “Enhanced magneto-optical Kerr effect in magnetic multilayers containing double-negative metamaterials,” J. Appl. Phys. 105(5), 054105 (2009).
    [Crossref]
  32. A. Zharov and V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102(12), 123514 (2007).
    [Crossref]
  33. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
    [Crossref] [PubMed]
  34. Š. Višňovský, “Magneto-optical ellipsometry,” Czech. J. Phys. 36(5), 625–650 (1986).
    [Crossref]
  35. M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons and Polaritons (Springer, Berlin, 2004).
  36. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1), 107–123 (1990).
    [Crossref]
  37. X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
    [Crossref]
  38. M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films by sputtering,” J. Appl. Phys. 70(11), 7065–7067 (1991).
    [Crossref]
  39. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  40. T. Kaihara, T. Ando, H. Shimizu, V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal,” Opt. Express 23(9), 11537–11555 (2015).
    [Crossref] [PubMed]
  41. M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
    [Crossref]
  42. X. Zhou and X. Ling, “Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting,” Opt. Express 24(3), 3025–3036 (2016).
    [Crossref] [PubMed]
  43. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, 1997), Chap. 4.

2017 (2)

T. Tang, J. Li, L. Luo, P. Sun, and Y. Zhang, “Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon- and mu-near-zero metamaterial slab,” Opt. Express 25(3), 2347–2354 (2017).
[Crossref]

M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
[Crossref]

2016 (4)

X. Zhou and X. Ling, “Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting,” Opt. Express 24(3), 3025–3036 (2016).
[Crossref] [PubMed]

T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, “Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial,” Opt. Express 24(24), 28113–28121 (2016).
[Crossref] [PubMed]

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6(1), 30762 (2016).
[Crossref] [PubMed]

X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
[Crossref]

2015 (3)

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).

T. Kaihara, T. Ando, H. Shimizu, V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal,” Opt. Express 23(9), 11537–11555 (2015).
[Crossref] [PubMed]

2014 (1)

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

2013 (4)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

2012 (1)

X. Zhou, X. Lin, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

2011 (5)

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, “Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures,” J. Opt. Soc. Am. B 28(9), 2115–2122 (2011).
[Crossref]

2010 (2)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
[Crossref]

2009 (5)

J. M. Ménard, A. E. Mattacchione, M. Betz, and H. M. van Driel, “Imaging the spin Hall effect of light inside semiconductors via absorption,” Opt. Lett. 34(15), 2312–2314 (2009).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

V. Belotelov, D. Bykov, L. Doskolovich, A. Kalish, and A. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
[Crossref]

Y. Dong and X. Zhang, “Enhanced magneto-optical Kerr effect in magnetic multilayers containing double-negative metamaterials,” J. Appl. Phys. 105(5), 054105 (2009).
[Crossref]

2008 (2)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Shoji and T. Mizumoto, “Ultra-wideband design of waveguide magneto-optical isolator operating in 1.31 µm and 1.55 µm band,” Opt. Express 15(2), 639–645 (2007).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

A. Zharov and V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102(12), 123514 (2007).
[Crossref]

2006 (1)

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1991 (1)

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films by sputtering,” J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

1990 (1)

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1), 107–123 (1990).
[Crossref]

1989 (1)

W. Zeper, F. Greidanus, and P. Carcia, “Evaporated Co/Pt layered structures for magneto-optical recording,” IEEE Trans. Magn. 25(5), 3764–3766 (1989).
[Crossref]

1986 (1)

Š. Višňovský, “Magneto-optical ellipsometry,” Czech. J. Phys. 36(5), 625–650 (1986).
[Crossref]

1985 (1)

N. Imamura, S. Tanaka, F. Tanaka, and Y. Nagao, “Magneto-optical recording on amorphous films,” IEEE Trans. Magn. 21(5), 1607–1612 (1985).
[Crossref]

Abe, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films by sputtering,” J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Adeyeye, A. O.

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Albrecht, M.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

Ando, K.

Ando, T.

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Bader, S. D.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1), 107–123 (1990).
[Crossref]

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Belotelov, V.

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

Betz, M.

J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
[Crossref]

J. M. Ménard, A. E. Mattacchione, M. Betz, and H. M. van Driel, “Imaging the spin Hall effect of light inside semiconductors via absorption,” Opt. Lett. 34(15), 2312–2314 (2009).
[Crossref] [PubMed]

Bi, L.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Bratschitsch, R.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Bretner, I.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Bykov, D.

Carcia, P.

W. Zeper, F. Greidanus, and P. Carcia, “Evaporated Co/Pt layered structures for magneto-optical recording,” IEEE Trans. Magn. 25(5), 3764–3766 (1989).
[Crossref]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Chen, S.

M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

Chengquan, M.

M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
[Crossref]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Cuevas, J. C.

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

Demidenko, Y.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Dolling, G.

Dong, H. K.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Dong, Y.

Y. Dong and X. Zhang, “Enhanced magneto-optical Kerr effect in magnetic multilayers containing double-negative metamaterials,” J. Appl. Phys. 105(5), 054105 (2009).
[Crossref]

Doskolovich, L.

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

Dregely, D.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Du, J.

L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Enkrich, C.

Fan, D.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Furuyama, H.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films by sputtering,” J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Gao, F.

L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Garcia-Martin, J. M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Garcíamartín, A.

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Gomi, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films by sputtering,” J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Gorodetski, Y.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Greidanus, F.

W. Zeper, F. Greidanus, and P. Carcia, “Evaporated Co/Pt layered structures for magneto-optical recording,” IEEE Trans. Magn. 25(5), 3764–3766 (1989).
[Crossref]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Hasman, E.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Hautmann, C.

J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
[Crossref]

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Hu, D.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Hu, J.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Imamura, N.

N. Imamura, S. Tanaka, F. Tanaka, and Y. Nagao, “Magneto-optical recording on amorphous films,” IEEE Trans. Magn. 21(5), 1607–1612 (1985).
[Crossref]

Inchausti, X.

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kaihara, T.

Kalish, A.

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kleiner, V.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Klieber, C.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

Knittel, V.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Kurin, V.

A. Zharov and V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102(12), 123514 (2007).
[Crossref]

Leitenstorfer, A.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Li, C.

Li, J.

Lin, X.

X. Zhou, X. Lin, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Linden, S.

Ling, X.

X. Zhou and X. Ling, “Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting,” Opt. Express 24(3), 3025–3036 (2016).
[Crossref] [PubMed]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

Liu, C.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1), 107–123 (1990).
[Crossref]

Liu, J.

X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
[Crossref]

Lozovski, V.

Luo, H.

M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
[Crossref]

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Lin, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Luo, L.

Luo, X.

X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
[Crossref]

Maccaferri, N.

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

Makarov, D.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, “Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures,” J. Opt. Soc. Am. B 28(9), 2115–2122 (2011).
[Crossref]

Mattacchione, A.

J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
[Crossref]

Mattacchione, A. E.

Ménard, J.

J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
[Crossref]

Ménard, J. M.

Mizumoto, T.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Y. Shoji and T. Mizumoto, “Ultra-wideband design of waveguide magneto-optical isolator operating in 1.31 µm and 1.55 µm band,” Opt. Express 15(2), 639–645 (2007).
[Crossref] [PubMed]

Moog, E. R.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1), 107–123 (1990).
[Crossref]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Nagao, Y.

N. Imamura, S. Tanaka, F. Tanaka, and Y. Nagao, “Magneto-optical recording on amorphous films,” IEEE Trans. Magn. 21(5), 1607–1612 (1985).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Nelson, K. A.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Qiu, T.

X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
[Crossref]

Qiu, X.

L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Saito, H.

Schmidt, O. G.

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shimizu, H.

Shitrit, N.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Shoji, Y.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Y. Shoji and T. Mizumoto, “Ultra-wideband design of waveguide magneto-optical isolator operating in 1.31 µm and 1.55 µm band,” Opt. Express 15(2), 639–645 (2007).
[Crossref] [PubMed]

Shu, W.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Sun, P.

Tanaka, F.

N. Imamura, S. Tanaka, F. Tanaka, and Y. Nagao, “Magneto-optical recording on amorphous films,” IEEE Trans. Magn. 21(5), 1607–1612 (1985).
[Crossref]

Tanaka, S.

N. Imamura, S. Tanaka, F. Tanaka, and Y. Nagao, “Magneto-optical recording on amorphous films,” IEEE Trans. Magn. 21(5), 1607–1612 (1985).
[Crossref]

Tang, T.

Tang, Z.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Temnov, V. V.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Thomay, T.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Tian, K.

M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
[Crossref]

Tripathy, D.

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

Van Driel, H.

J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
[Crossref]

van Driel, H. M.

Vavassori, P.

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Višnovský, Š.

Š. Višňovský, “Magneto-optical ellipsometry,” Czech. J. Phys. 36(5), 625–650 (1986).
[Crossref]

Wegener, M.

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Wen, S.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Lin, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Xie, L.

L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Yu, Z.

X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
[Crossref]

Yuasa, S.

Zak, J.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1), 107–123 (1990).
[Crossref]

Zayets, V.

Zeper, W.

W. Zeper, F. Greidanus, and P. Carcia, “Evaporated Co/Pt layered structures for magneto-optical recording,” IEEE Trans. Magn. 25(5), 3764–3766 (1989).
[Crossref]

Zhang, J.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

Zhang, J. Q. Z.

L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).

Zhang, X.

Y. Dong and X. Zhang, “Enhanced magneto-optical Kerr effect in magnetic multilayers containing double-negative metamaterials,” J. Appl. Phys. 105(5), 054105 (2009).
[Crossref]

Zhang, Y.

Zhang, Z.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Zharov, A.

A. Zharov and V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102(12), 123514 (2007).
[Crossref]

Zhou, M.

X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
[Crossref]

Zhou, X.

M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
[Crossref]

X. Zhou and X. Ling, “Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting,” Opt. Express 24(3), 3025–3036 (2016).
[Crossref] [PubMed]

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Lin, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Zou, Y.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Zvezdin, A.

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

ACS Photonics (1)

N. Maccaferri, X. Inchausti, A. Garcíamartín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, “Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2d magnetoplasmonic crystals,” ACS Photonics 2(12), 1769–1779 (2015).
[Crossref]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Appl. Phys. Lett. (4)

X. Luo, M. Zhou, J. Liu, T. Qiu, and Z. Yu, “Magneto-optical metamaterials with extraordinarily strong magneto-optical effect,” Appl. Phys. Lett. 108(13), 131104 (2016).
[Crossref]

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

X. Zhou, X. Lin, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Chin. Opt. Lett. (1)

L. Xie, X. Qiu, J. Q. Z. Zhang, J. Du, and F. Gao, “Determination of the focused beam waist of lasers with weak measurements,” Chin. Opt. Lett. 13(11), 74–77 (2015).

Czech. J. Phys. (1)

Š. Višňovský, “Magneto-optical ellipsometry,” Czech. J. Phys. 36(5), 625–650 (1986).
[Crossref]

IEEE Trans. Magn. (2)

W. Zeper, F. Greidanus, and P. Carcia, “Evaporated Co/Pt layered structures for magneto-optical recording,” IEEE Trans. Magn. 25(5), 3764–3766 (1989).
[Crossref]

N. Imamura, S. Tanaka, F. Tanaka, and Y. Nagao, “Magneto-optical recording on amorphous films,” IEEE Trans. Magn. 21(5), 1607–1612 (1985).
[Crossref]

J. Appl. Phys. (3)

Y. Dong and X. Zhang, “Enhanced magneto-optical Kerr effect in magnetic multilayers containing double-negative metamaterials,” J. Appl. Phys. 105(5), 054105 (2009).
[Crossref]

A. Zharov and V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102(12), 123514 (2007).
[Crossref]

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films by sputtering,” J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

J. Magn. Magn. Mater. (1)

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1), 107–123 (1990).
[Crossref]

J. Opt. Soc. Am. B (2)

Nano Lett. (2)

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4(6), 1468 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, and L. C. Kimerling, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Photonics Res. (1)

M. Chengquan, S. Chen, X. Zhou, K. Tian, and H. Luo, “Observation of tiny polarization rotation rate in total internal reflection via weak measurements,” Photonics Res. 5(2), 92 (2017).
[Crossref]

Phys. Rev. A (2)

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Phys. Rev. B (1)

J. Ménard, A. Mattacchione, H. Van Driel, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Phys. Rev. B 82(4), 045303 (2010).
[Crossref]

Phys. Rev. Lett. (4)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6(1), 30762 (2016).
[Crossref] [PubMed]

Other (3)

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).

M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons and Polaritons (Springer, Berlin, 2004).

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, 1997), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic for SHE of reflected light in a magnetic thin film with DNG substrate. The red arrows is the magnetization direction of three types of MOKE configurations.

Fig. 2
Fig. 2

(a) Kerr rotation of reflected light when applying two opposite magnetic fields to Ce:YIG layer along x axis. (b) and (c) Transverse shift (centroid shift perpendicular to the incident plane) of left- and right-circularly polarized light with vertical polarization incident for opposite magnetic fields ( + H and –H). (d) Asymmetry of SHE ( S = δ V + + δ V )and MOSHE shift ( δ MO = δ ( - H ) - δ ( + H ) )of reflected light.

Fig. 3
Fig. 3

(a) Kerr rotation of reflected light when applying opposite magnetic field to Ce:YIG layer along z axis. (b) and (c) Transverse shift (centroid shift perpendicular to the incident plane) of left- and right-circularly polarized light with vertical polarization incident for opposite magnetic field ( + H and –H). (d) Asymmetry of SHEand MOSHE shift of reflected light.

Fig. 4
Fig. 4

(a) and (b) Transverse shift (centroid shift perpendicular to the incident plane) of left- and right-circularly polarized light with vertical polarization incident for opposite magnetic fields ( + H and –H) along y axis. (c) Asymmetry of SHE ( S = δ V + + δ V ). (d) MOSHE shift ( δ MO = δ ( - H ) - δ ( + H ) ) of reflected light.

Fig. 5
Fig. 5

(a) Kerr rotation of reflected light when applying two opposite magnetic fields to Ce:YIG layer along x axis. (b) and (c) Transverse shift (centroid shift perpendicular to the incident plane) of left- and right-circularly polarized light with vertical polarization incident for opposite magnetic fields ( + H and –H). (d) Asymmetry of SHE ( S = δ V + + δ V ) of reflected light.

Fig. 6
Fig. 6

(a) Kerr rotation of reflected light when applying two opposite magnetic fields to Ce:YIG layer along x axis. (b) and (c) Transverse shift (centroid shift perpendicular to the incident plane) of left- and right-circularly polarized light with vertical polarization incident for opposite magnetic fields ( + H and –H). (d) Asymmetry of SHE ( S = δ V + + δ V ) of reflected light.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ε 2 = [ ε 20 0 0 0 ε 20 i ε 21 0 i ε 21 ε 20 ]
γ ( n ) 2 E 0 ( n ) γ ( n ) ( γ ( n ) E 0 ( n ) ) = ω 2 c 2 ε ( n ) μ ( n ) E 0 ( n )
D ( 2 ) = [ D 11 D 11 D 13 D 13 D 21 D 21 D 23 D 23 D 31 D 31 D 33 D 33 D 41 D 41 D 43 D 43 ]
P ( n ) = [ e i ( ω / c ) N z 1 ( n ) d ( n ) 0 0 0 0 e i ( ω / c ) N z 2 ( n ) d ( n ) 0 0 0 0 e i ( ω / c ) N z 3 ( n ) d ( n ) 0 0 0 0 e i ( ω / c ) N z 4 ( n ) d ( n ) ]
Q = D ( 1 ) 1 D ( 2 ) P ( 2 ) D ( 2 ) 1 D ( 3 )
r s s = Q 21 Q 33 Q 23 Q 31 Q 11 Q 33 Q 13 Q 31 , r p s = Q 41 Q 33 Q 43 Q 31 Q 11 Q 33 Q 13 Q 31 , r s p = Q 11 Q 23 Q 21 Q 13 Q 11 Q 33 Q 13 Q 31 a n d r p p = Q 11 Q 43 Q 41 Q 13 Q 11 Q 33 Q 13 Q 31 .
E ˜ i ± ( k i x , k i y ) = ( e i x + i σ e i x ) w 0 2 π exp [ w 0 2 ( k i x 2 + k i y 2 ) 4 ]
[ E ˜ r H E ˜ r V ] = [ r p p k r y k 0 ( r p s r s p ) cot θ i r p s + k r y k 0 ( r p p r s s ) cot θ i r s p + k r y k 0 ( r p p r s s ) cot θ i r s s k r y k 0 ( r p s r s p ) cot θ i ] [ E ˜ i H E ˜ i V ]
E ˜ r H = ( E ˜ r + + E ˜ r ) / 2 E ˜ r V = i ( E ˜ r E ˜ r + ) / 2
E r ( x r , y r , z r ) = E ˜ r ( k r x , k r y ) exp [ i ( k r x x r + k r y y r + k r z z r ) ] d k r x d k r y
δ V ± = E r ± E r ± * y r d x r d y r E r ± E r ± * d x r d y r
δ V ± = ± k 0 w 0 2 cot θ i [ | r p | | r s | cos ( φ p φ s ) | χ | | r p | | r s | sin ( φ p φ p s ) 1 ] cot 2 θ i [ | r p | 2 | r s | 2 + cos 2 ( φ s ) 2 | χ | sin ( φ p s ) cos ( φ s ) ] + k 0 2 w 0 2 ( cos ( φ s ) ± | χ | sin ( φ p s ) ) 2
δ V ± = ± k 0 2 w 0 2 cot θ i [ | χ | 2 | r s p | | r s | [ sin ( φ s p φ s ) ± | χ | cos ( φ p s φ s p ) ] + | r p | | r s | [ cos ( φ p φ s ) | χ | sin ( φ p φ p s ) ] 1 ] k 0 2 w 0 2 ( 1 + | χ | 2 ) + cot 2 θ i | r p | 2 | r s | 2 ± 2 k 0 2 w 0 2 | χ | sin ( φ p s φ s )
δ V ± = ± k 0 2 w 0 2 cot θ i [ | r p | | r s | cos ( φ p φ s ) 1 ] k 0 2 w 0 2 + cot 2 θ i | r p | 2 | r s | 2
S = δ V + + δ V
δ MO = δ ( - H ) - δ ( + H )

Metrics