Abstract

We investigate the formation and propagation of ultraslow weak-light solitons and their memory in the atomic gas filled in a kagome-structured hollow-core photonic crystal fiber (HC-PCF) via electromagnetically induced transparency (EIT). We show that, due to the strong light-atom coupling contributed by the transverse confinement of the HC-PCF, the EIT and hence the optical Kerr nonlinearity of the system can be largely enhanced, and hence optical solitons with very short formation distance, ultraslow propagation velocity, and extremely low generation power can be realized. We also show that the optical solitons obtained can not only be robust during propagation, but also be stored and retrieved with high efficiency through the switching off and on of a control laser field. The results reported herein are promising for practical applications of all-optical information processing and transmission via the ultraslow weak-light solitons and the kagome-structured HC-PCF.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide

Liang Li, Chengjie Zhu, L. Deng, and Guoxiang Huang
J. Opt. Soc. Am. B 30(1) 197-204 (2013)

Storage and retrieval of electromagnetic waves with orbital angular momentum via plasmon-induced transparency

Zhengyang Bai, Datang Xu, and Guoxiang Huang
Opt. Express 25(2) 785-798 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
    [Crossref]
  2. J. B. Khurgin and R. S. Tucker eds., Slow Light: Science and Applications (CRC, Taylor and Francis, Boca Raton, 2009).
  3. Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [Crossref] [PubMed]
  4. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
    [Crossref]
  5. T. Hong, “Spatial Weak-Light Solitons in an Electromagnetically Induced Nonlinear Waveguide,” Phys. Rev. Lett 90, 183901 (2003).
    [Crossref] [PubMed]
  6. M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84, 5094 (2000).
    [Crossref] [PubMed]
  7. C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
    [Crossref]
  8. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
    [Crossref]
  9. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
    [Crossref]
  10. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333 (2012).
    [Crossref]
  11. Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
    [Crossref]
  12. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
    [Crossref] [PubMed]
  13. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574 (2006).
    [Crossref] [PubMed]
  14. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680 (2007).
    [Crossref] [PubMed]
  15. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
    [Crossref]
  16. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
    [Crossref]
  17. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035 (2008).
    [Crossref] [PubMed]
  18. F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694 (2005).
    [Crossref] [PubMed]
  19. S. Ghosh, A. R. Bhagwat, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
    [Crossref] [PubMed]
  20. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32, 1323 (2007).
    [Crossref] [PubMed]
  21. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [Crossref] [PubMed]
  22. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
    [Crossref] [PubMed]
  23. P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
    [Crossref]
  24. K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
    [Crossref]
  25. F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A. 94, 043833 (2016).
    [Crossref]
  26. M. Facão, S. Rodrigues, and M. I. Carvalho, “Temporal dissipative solitons in a three-level atomic medium confined in a photonic-band-gap fiber,” Phys. Rev. A 91, 013828 (2015).
    [Crossref]
  27. F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195 (2002).
    [Crossref] [PubMed]
  28. D. A. Steck, Cesium D Line Data, http://steck.us/alkalidata/ .
  29. J. Xu and G. Huang, “Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide,” Opt. Express 21, 5149 (2013).
    [Crossref] [PubMed]
  30. L. Li, C. Zhu, L. Deng, and G. Huang, “Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide,” J. Opt. Soc. Am. B 30, 197 (2013).
    [Crossref]
  31. Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801(R) (2013).
    [Crossref]
  32. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, Elsevier, 2008).
  33. M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
    [Crossref]
  34. The frequency and wavenumber of the signal field are given by ωs + Δω and ks + K(Δω), respectively. Δω [K(Δω)] is the deviation of the signal-field frequency (wavenumber) when the atoms are present in the fiber core. Thus the point Δω = 0 corresponds to the center frequency of the signal field.
  35. M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A. 51, 4030 (1995).
    [Crossref] [PubMed]
  36. M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
    [Crossref]
  37. C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A. 85, 012518 (2012).
    [Crossref]
  38. G. P. Agrawal, Nonlinear Fiber Optics (4th Edition) (Elsevier, 2007).
  39. The Kerr nonlinearity in the HC-PCF in the absence of the atomic gas is many orders of magnitude smaller than the one obatined in the presence of the atomic gas via EIT given here, and hence can be neglected safely.
  40. A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, CA, 1992), Chap. 5.
  41. C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
    [Crossref] [PubMed]
  42. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
    [Crossref] [PubMed]
  43. I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
    [Crossref] [PubMed]
  44. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
    [Crossref] [PubMed]
  45. R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
    [Crossref]
  46. R. Zhang, S. R. Garner, and L. V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates,” Phys. Rev. Lett. 103, 233602 (2009).
    [Crossref]
  47. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
    [Crossref]
  48. Y. O. Dudin, R. Zhao, T. A. B. Kennedy, and A. Kuzmich, “Light storage in a magnetically dressed optical lattice,” Phys. Rev. A 81, 041805(R) (2010).
    [Crossref]
  49. F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
    [Crossref]
  50. H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
    [Crossref] [PubMed]
  51. Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
    [Crossref] [PubMed]
  52. I. Novikova, N. B. Phillips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
    [Crossref]
  53. A. Eilam, A. D. Wilson Gordon, and H. Friedmann, “Efficient light storage in a Λ system due to coupling between lower levels,” Opt. Lett. 34, 1834 (2009).
    [Crossref] [PubMed]
  54. G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
    [Crossref] [PubMed]
  55. C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
    [Crossref]
  56. The spatial length of the signal pulse in the propagation direction is given by Ṽgτ0, which is about 2.5 mm according to the result (12) and the pulse duration τ0 = 1.0 × 10−7 s.
  57. J. C. Knight, I. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476 (1998).
    [Crossref] [PubMed]
  58. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
    [Crossref]
  59. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358 (2003).
    [Crossref] [PubMed]
  60. P. S. Light, F. Benabid, and F. Couny, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32, 1323 (2007).
    [Crossref] [PubMed]
  61. N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875 (2010).
    [Crossref] [PubMed]

2016 (2)

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A. 94, 043833 (2016).
[Crossref]

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

2015 (1)

M. Facão, S. Rodrigues, and M. I. Carvalho, “Temporal dissipative solitons in a three-level atomic medium confined in a photonic-band-gap fiber,” Phys. Rev. A 91, 013828 (2015).
[Crossref]

2014 (4)

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
[Crossref]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

2013 (4)

L. Li, C. Zhu, L. Deng, and G. Huang, “Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide,” J. Opt. Soc. Am. B 30, 197 (2013).
[Crossref]

J. Xu and G. Huang, “Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide,” Opt. Express 21, 5149 (2013).
[Crossref] [PubMed]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801(R) (2013).
[Crossref]

2012 (3)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333 (2012).
[Crossref]

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A. 85, 012518 (2012).
[Crossref]

2011 (6)

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[Crossref]

F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
[Crossref]

2010 (4)

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875 (2010).
[Crossref] [PubMed]

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

Y. O. Dudin, R. Zhao, T. A. B. Kennedy, and A. Kuzmich, “Light storage in a magnetically dressed optical lattice,” Phys. Rev. A 81, 041805(R) (2010).
[Crossref]

2009 (8)

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[Crossref] [PubMed]

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

A. Eilam, A. D. Wilson Gordon, and H. Friedmann, “Efficient light storage in a Λ system due to coupling between lower levels,” Opt. Lett. 34, 1834 (2009).
[Crossref] [PubMed]

2008 (2)

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035 (2008).
[Crossref] [PubMed]

I. Novikova, N. B. Phillips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[Crossref]

2007 (4)

2006 (2)

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574 (2006).
[Crossref] [PubMed]

S. Ghosh, A. R. Bhagwat, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[Crossref] [PubMed]

2005 (3)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694 (2005).
[Crossref] [PubMed]

2004 (1)

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

2003 (2)

T. Hong, “Spatial Weak-Light Solitons in an Electromagnetically Induced Nonlinear Waveguide,” Phys. Rev. Lett 90, 183901 (2003).
[Crossref] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358 (2003).
[Crossref] [PubMed]

2002 (2)

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
[Crossref] [PubMed]

2001 (2)

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[Crossref] [PubMed]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

1998 (1)

J. C. Knight, I. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476 (1998).
[Crossref] [PubMed]

1995 (1)

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A. 51, 4030 (1995).
[Crossref] [PubMed]

Abdolvand, A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
[Crossref]

Afzelius, M.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (4th Edition) (Elsevier, 2007).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
[Crossref] [PubMed]

Appe, J.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Arimondo, E.

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A. 51, 4030 (1995).
[Crossref] [PubMed]

Bai, Z.

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Bao, X. H.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Behroozi, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Benabid, F.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A. 85, 012518 (2012).
[Crossref]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[Crossref]

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875 (2010).
[Crossref] [PubMed]

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32, 1323 (2007).
[Crossref] [PubMed]

P. S. Light, F. Benabid, and F. Couny, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32, 1323 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574 (2006).
[Crossref] [PubMed]

F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694 (2005).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
[Crossref] [PubMed]

Bhagwat, A. R.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[Crossref] [PubMed]

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035 (2008).
[Crossref] [PubMed]

S. Ghosh, A. R. Bhagwat, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[Crossref] [PubMed]

Bird, D. M.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

Birks, T. A.

Blatt, F.

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A. 94, 043833 (2016).
[Crossref]

Bloch, I.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, Elsevier, 2008).

Broeng, I.

J. C. Knight, I. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476 (1998).
[Crossref] [PubMed]

Burger, S.

Campbel, C. J.

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

Carvalho, M. I.

M. Facão, S. Rodrigues, and M. I. Carvalho, “Temporal dissipative solitons in a three-level atomic medium confined in a photonic-band-gap fiber,” Phys. Rev. A 91, 013828 (2015).
[Crossref]

Champion, T. F. M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
[Crossref]

Chen, S.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

Chen, Y. C.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Chen, Y. F.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Chen, Y. H.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Couny, F.

Dai, H. N.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Davidson, N.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

Deng, L.

L. Li, C. Zhu, L. Deng, and G. Huang, “Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide,” J. Opt. Soc. Am. B 30, 197 (2013).
[Crossref]

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

Deng, Y. J.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Dewhurst, S. J.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Du, S.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Dudin, Y. O.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801(R) (2013).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

Y. O. Dudin, R. Zhao, T. A. B. Kennedy, and A. Kuzmich, “Light storage in a magnetically dressed optical lattice,” Phys. Rev. A 81, 041805(R) (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Eilam, A.

England, D. G.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Epple, G.

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Euser, T. G.

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Facão, M.

M. Facão, S. Rodrigues, and M. I. Carvalho, “Temporal dissipative solitons in a three-level atomic medium confined in a photonic-band-gap fiber,” Phys. Rev. A 91, 013828 (2015).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

Friedmann, H.

Gaeta, A. L.

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[Crossref]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[Crossref] [PubMed]

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035 (2008).
[Crossref] [PubMed]

S. Ghosh, A. R. Bhagwat, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[Crossref] [PubMed]

Garner, S. R.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[Crossref] [PubMed]

Giroday, A. B.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Gorshkov, A. V.

I. Novikova, N. B. Phillips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[Crossref]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
[Crossref] [PubMed]

Graf, M.

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A. 51, 4030 (1995).
[Crossref] [PubMed]

Grogan, M. D. W.

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Halfmann, T.

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A. 94, 043833 (2016).
[Crossref]

Hau, L.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Hau, L. V.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
[Crossref]

Hong, T.

T. Hong, “Spatial Weak-Light Solitons in an Electromagnetically Induced Nonlinear Waveguide,” Phys. Rev. Lett 90, 183901 (2003).
[Crossref] [PubMed]

Hu, C.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Huang, G.

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

L. Li, C. Zhu, L. Deng, and G. Huang, “Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide,” J. Opt. Soc. Am. B 30, 197 (2013).
[Crossref]

J. Xu and G. Huang, “Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide,” Opt. Express 21, 5149 (2013).
[Crossref] [PubMed]

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

Jelezko, F.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Jen, H. H.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

Jenkins, S. D.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

Jin, X. M.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Jin, X.-M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Joly, N. Y.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
[Crossref]

Kennedy, T. A. B.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

Y. O. Dudin, R. Zhao, T. A. B. Kennedy, and A. Kuzmich, “Light storage in a magnetically dressed optical lattice,” Phys. Rev. A 81, 041805(R) (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[Crossref] [PubMed]

Kleinbach, K. S.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Knight, J. C.

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
[Crossref] [PubMed]

J. C. Knight, I. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476 (1998).
[Crossref] [PubMed]

Kolthammer, W. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Kragoll, S.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Kübler, H.

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

Kuhr, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Kuzmich, A.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801(R) (2013).
[Crossref]

Y. O. Dudin, R. Zhao, T. A. B. Kennedy, and A. Kuzmich, “Light storage in a magnetically dressed optical lattice,” Phys. Rev. A 81, 041805(R) (2010).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

Lee, M. J.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Li, L.

L. Li, C. Zhu, L. Deng, and G. Huang, “Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide,” J. Opt. Soc. Am. B 30, 197 (2013).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801(R) (2013).
[Crossref]

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Liang, Q.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

Light, P. S.

Liu, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Liu, N. L.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Londero, P.

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[Crossref]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[Crossref] [PubMed]

Löw, R.

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Luiten, A. N.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A. 85, 012518 (2012).
[Crossref]

P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32, 1323 (2007).
[Crossref] [PubMed]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[Crossref] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

Lutz, C.

F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

Maguler, J.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[Crossref] [PubMed]

Mandel, T.

F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

Maric, M.

Matsukevich, D. N.

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

Michelberger, P. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Moloney, J. V.

A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, CA, 1992), Chap. 5.

Newell, A. C.

A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, CA, 1992), Chap. 5.

Nold, J.

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
[Crossref]

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333 (2012).
[Crossref]

I. Novikova, N. B. Phillips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[Crossref]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
[Crossref] [PubMed]

Nunn, J.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Pan, J. W.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
[Crossref]

Payne, M. G.

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Pearce, G. J.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680 (2007).
[Crossref] [PubMed]

Perrella, C.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A. 85, 012518 (2012).
[Crossref]

Peters, T.

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A. 94, 043833 (2016).
[Crossref]

Peyronel, T.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Pfau, T.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Phillips, D. F.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[Crossref] [PubMed]

Phillips, N. B.

I. Novikova, N. B. Phillips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[Crossref]

Polzik, E.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Poulton, C. G.

Pugatch, R.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Radnaev, A. G.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

Rarity, J.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Riedmatten, H.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[Crossref]

Rodrigues, S.

M. Facão, S. Rodrigues, and M. I. Carvalho, “Temporal dissipative solitons in a three-level atomic medium confined in a photonic-band-gap fiber,” Phys. Rev. A 91, 013828 (2015).
[Crossref]

Rosenfeld, W.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Rui, J.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Russell, P. St. J.

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
[Crossref]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680 (2007).
[Crossref] [PubMed]

F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694 (2005).
[Crossref] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358 (2003).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
[Crossref] [PubMed]

J. C. Knight, I. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476 (1998).
[Crossref] [PubMed]

Saha, K.

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

Schnorrberger, U.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Shields, A. J.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Simeonov, L. S.

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A. 94, 043833 (2016).
[Crossref]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Skagold, N.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Slepkov, A. D.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[Crossref] [PubMed]

Sørensen, A. S.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
[Crossref] [PubMed]

Sprague, M. R.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Stace, T. M.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A. 85, 012518 (2012).
[Crossref]

Stevenson, R. M.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Thew, R.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Thompson, J. D.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
[Crossref]

Trotzky, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Veit, C.

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

Venkataraman, V.

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[Crossref]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[Crossref] [PubMed]

Vuletic, V.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Walmsley, I.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Walmsley, I. A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333 (2012).
[Crossref]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[Crossref] [PubMed]

Wang, I. C.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Weber, M.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Weinfurter, H.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Wheeler, N. V.

Wiederhecker, G. S.

Wilson Gordon, A. D.

Wrachtrup, J.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Wu, Y.

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333 (2012).
[Crossref]

Xu, J.

Yang, F.

F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
[Crossref]

Yang, S. J.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Young, R. J.

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

Yu, I. A.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Yuan, Z. S.

F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
[Crossref]

Zhang, H.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

Zhao, B.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Zhao, R.

Y. O. Dudin, R. Zhao, T. A. B. Kennedy, and A. Kuzmich, “Light storage in a magnetically dressed optical lattice,” Phys. Rev. A 81, 041805(R) (2010).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

Zhao, T. M.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Zhu, C.

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

Euro. Phys. J. D. (1)

C. Simon, M. Afzelius, J. Appe, A. B. Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Krąğoll, J. Mąğuler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Skąğold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Euro. Phys. J. D. 58, 1 (2010).
[Crossref]

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B. 28, A11 (2011)
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

C. Veit, G. Epple, H. Kübler, T. G. Euser, P. St. J. Russell, and R. Löw, “RF-dressed Rydberg atoms in hollow-core fibres,” J. Phys. B: At. Mol. Opt. Phys. 49, 134005 (2016).
[Crossref]

Laser Photon. Rev. (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333 (2012).
[Crossref]

Nat. Commun. (1)

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Nat. Photon. (3)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photon. 8, 287 (2014).
[Crossref]

Nat. Phys. (2)

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100 (2009).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894 (2010).
[Crossref]

Nature (1)

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. A (8)

I. Novikova, N. B. Phillips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[Crossref]

Y. O. Dudin, R. Zhao, T. A. B. Kennedy, and A. Kuzmich, “Light storage in a magnetically dressed optical lattice,” Phys. Rev. A 81, 041805(R) (2010).
[Crossref]

F. Yang, T. Mandel, C. Lutz, Z. S. Yuan, and J. W. Pan, “Transverse mode revival of a light-compensated quantum memory,” Phys. Rev. A 83, 063420 (2011).
[Crossref]

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

M. Facão, S. Rodrigues, and M. I. Carvalho, “Temporal dissipative solitons in a three-level atomic medium confined in a photonic-band-gap fiber,” Phys. Rev. A 91, 013828 (2015).
[Crossref]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801(R) (2013).
[Crossref]

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

Phys. Rev. A. (3)

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A. 85, 012518 (2012).
[Crossref]

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A. 51, 4030 (1995).
[Crossref] [PubMed]

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A. 94, 043833 (2016).
[Crossref]

Phys. Rev. E (1)

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Phys. Rev. Lett (1)

T. Hong, “Spatial Weak-Light Solitons in an Electromagnetically Induced Nonlinear Waveguide,” Phys. Rev. Lett 90, 183901 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (11)

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[Crossref] [PubMed]

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

S. Ghosh, A. R. Bhagwat, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[Crossref] [PubMed]

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic Storage of Biphoton Entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[Crossref] [PubMed]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98, 243602 (2007).
[Crossref] [PubMed]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

Rev. Mod. Phys. (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
[Crossref] [PubMed]

J. C. Knight, I. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476 (1998).
[Crossref] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358 (2003).
[Crossref] [PubMed]

Other (8)

The spatial length of the signal pulse in the propagation direction is given by Ṽgτ0, which is about 2.5 mm according to the result (12) and the pulse duration τ0 = 1.0 × 10−7 s.

J. B. Khurgin and R. S. Tucker eds., Slow Light: Science and Applications (CRC, Taylor and Francis, Boca Raton, 2009).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, Elsevier, 2008).

D. A. Steck, Cesium D Line Data, http://steck.us/alkalidata/ .

The frequency and wavenumber of the signal field are given by ωs + Δω and ks + K(Δω), respectively. Δω [K(Δω)] is the deviation of the signal-field frequency (wavenumber) when the atoms are present in the fiber core. Thus the point Δω = 0 corresponds to the center frequency of the signal field.

G. P. Agrawal, Nonlinear Fiber Optics (4th Edition) (Elsevier, 2007).

The Kerr nonlinearity in the HC-PCF in the absence of the atomic gas is many orders of magnitude smaller than the one obatined in the presence of the atomic gas via EIT given here, and hence can be neglected safely.

A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, CA, 1992), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Kagome-structured HC-PCF with core radius r0 and pitch Λ0. (b) Atoms of a lambda-type three-level configuration are filled within the hollow core of the fiber, and initially prepared in the metastable |1〉 for suppressing four-wave mixing effect. (c) Numerical result of the electric-field distribution of the normalized fundamental-mode amplitude as a function of radius coordinate r in the HC-PCF made of silica when the atoms are absent. (d) Absorption spectrum Im(K) of the signal field as a function of Δω for different core radius r0. The red, blue and green lines are for r0 = 13 μm, 17 μm, and 100 μm, respectively. The other notations in the figure are explained in the text.
Fig. 2
Fig. 2 (a) The propagation of the ultraslow optical soliton, with |Ωs(z, τ)τ0| as a function of z/LD and t/τ0 (LD is dispersion length and τ0 is pulse duration). (b) The comparison of waveshapes between z = 0 (blue curve) and z = 2LD (red curve).
Fig. 3
Fig. 3 Numerical results on the storage and retrieval of an optical soliton pulse and a linear optical pulse for r0 = Λ0 = 13 μm. (a) [(b)] Evolution of the dimensionless half Rabi frequency |Ωsτ0| of the signal field (atomic coherence σ̃21) as a function of time t for different propagation distance z in the soliton regime. (c) [(d)] Evolution of the dimensionless half Rabi frequency |Ωsτ0| of the signal field (atomic coherence σ̃21) as a function of t for different z in the linear regime. In each panel, the black, red, green, yellow, sky blue, and blue solid lines are for z=0, 1, 2, 3, 4 and 5 cm, respectively; the purple solid line represents the dimensionless half Rabi frequency |Ωcτ0| of the control field.
Fig. 4
Fig. 4 Memory efficiency η of the optical soliton pulse as a function of the fiber length Lz. Solid lines are fitted curves based on numerical calculation. The blue, red and green solid lines are for the fiber core radius r0=13, 15 and 17 μm, respectively. Dashed-dotted lines for each core radius are the memory efficiencies when a microwave field is coupled to the two lower atomic levels [i.e. |1〉 and |2〉 in Fig. 1(b)].
Fig. 5
Fig. 5 (a) Storage and retrieval of the optical soliton pulse in the HC-PCF with core radius r0 = 50 μm and pitch Λ0 = 25 μm. The subplots from (i) to (v) give the intensity distribution |Es|2 of the soliton pulse in the (x, y) plane when propagating to the distance z = 0, 1, 2.5, 4, and 5 cm, respectively. t = 0, 3.5τ0, 15τ0, 25τ0, and 28.5τ0 shown respectively in (i) to (v) are the times when soliton’s peak arrives at the positions z = 0, 1, 2.5, 4, and 5 cm, respectively. (b) Storage and retrieval of a linear optical pulse in the same fiber.
Fig. 6
Fig. 6 Numerical result for the effective refractive index neff of the kagome-structured HC-PCF as a function of frequency ω with pitch Λ0 = 13 μm and three different core radius r0. The solid (dashed) line is for the fundamental (first higher-order) mode; the blue, red, and green colors are for r0 = 13 μm, r0 = 15 μm, r0 = 17 μm, respectively.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

E = l = s , c e l R r 0 J 1 ( k r 0 ) l ( z , t ) q l ( x , y ) e i [ β l z ω t ] + c . c . .
i ( t + Γ ) σ = [ H ^ int , σ ] ,
i ( z + n 2 c n eff t ) Ω s + κ 13 σ ˜ 31 = 0 ,
K = Δ ω c n 2 n eff + κ 13 ( Δ ω + d 21 ) | ζ ( x , y ) Ω c | 2 ( Δ ω + d 21 ) ( Δ ω + d 31 ) ,
Ω s ( 1 ) = F exp ( i θ ) ,
σ j 1 ( 1 ) = δ j 3 ( Δ ω + d 21 ) δ j 2 ζ * ( x , y ) Ω c * | ζ ( x , y ) Ω c | 2 ( Δ ω + d 21 ) ( Δ ω + d 31 ) ζ ( x , y ) F e i θ , ( j = 2 , 3 )
V g = { 1 c n 2 n eff + κ 13 ( Δ ω + d 21 ) 2 + | ζ ( x , y ) Ω c | 2 [ | ζ ( x , y ) Ω c | 2 ( Δ ω + d 21 ) ( Δ ω + d 31 ) ] 2 } 1 .
W = κ 13 ζ ( x , y ) Ω c a 32 * ( 2 ) + ( Δ ω + d 21 ) ( 2 a 11 ( 2 ) + a 22 ( 2 ) ) | ζ ( x , y ) Ω c | 2 ( Δ ω + d 21 ) ( Δ ω + d 31 )
i U z K 2 2 2 U τ 2 W | U | 2 U = i a U ,
χ ( 3 ) = 2 c ω s | p 13 | 2 2 W .
E s = τ 0 | p 13 | K ˜ W ˜ R r 0 J 1 ( k r 0 ) J 0 ( 2.405 r r 0 ) sech [ 1 τ 0 ( t z V ˜ g ) ] × exp [ i ( K ˜ 0 1 2 L D ) z i ( ω s + Δ ω ) t ] + c . c . ,
L N = 2.9 cm ,
V ˜ g = Re ( V g ) = 8.17 × 10 4 c ,
P max = 0.82 × 10 9 W ,
Ω c = Ω c 0 { 1 1 2 tanh [ t T c off T s ] + 1 2 tanh [ t T c on T s ] } ,
η = T c on d t r r 0 d x d y | E s out ( x , y , t ) | 2 T c off d t r r 0 d x d y | E s in ( x , y , t ) | 2 ,
J 2 = | T c off d t r r 0 d x d y E s out ( x , y , t + Δ T ) E s in ( x , y , t ) | 2 T c off d t r r 0 d x d y | E s in ( x , y , t ) | 2 T c on d t r r 0 d x d y | E s out ( x , y , t ) | 2 ,
E = α ω e α ( ω ) α ( ω ) q α ( x , y ) e i [ β α ( ω ) z ω t ] + c . c . ,
( 2 x 2 + 2 y 2 ) q α ( x , y ) + n 2 ( x , y ) ω 2 c 2 q α ( x , y ) = β α 2 ( ω ) q α ( x , y ) .
i t σ 11 i Γ 13 σ 33 + ζ * ( x , y ) Ω s * σ 31 ζ ( x , y ) Ω s σ 31 * = 0 ,
i t σ 22 i Γ 23 σ 33 + ζ * ( x , y ) Ω c * σ 32 ζ ( x , y ) Ω c σ 32 * = 0 ,
i t σ 33 + i Γ 13 σ 33 + ζ * ( x , y ) Ω s * σ 31 + ζ ( x , y ) Ω s σ 31 * ζ * ( x , y ) Ω c * σ 32 + ζ ( x , y ) Ω c σ 32 * = 0 ,
( i t + d 21 ) σ 21 ζ ( x , y ) Ω s σ 32 * + ζ * ( x , y ) Ω c * σ 31 = 0 ,
( i t + d 31 ) σ 31 ζ ( x , y ) Ω s ( σ 33 σ 11 ) + ζ ( x , y ) Ω c σ 21 = 0 ,
( i t + d 32 ) σ 32 ζ ( x , y ) Ω c ( σ 33 σ 22 ) + ζ ( x , y ) Ω s σ 21 * = 0 ,
i ζ ( x , y ) ( z + n 2 c n eff t ) Ω s + κ 13 σ 31 = 0 ,
a 11 ( 2 ) = P 2 P 1 i Γ 13 | ζ ( x , y ) Ω c | 2 ( 1 d 32 * 1 32 ) | ζ ( x , y ) | 2 ,
a 22 ( 2 ) = G | ζ ( x , y ) | 2 i Γ 13 a 11 ( 2 ) i Γ 13 ,
a 21 ( 2 ) = ζ * ( x , y ) Ω c * ( 2 Δ ω + d 21 + d 31 ) D 2 ζ ( x , y ) ,
a 31 ( 2 ) = ( Δ ω + d 21 ) 2 + | ζ ( x , y ) Ω c | 2 D 2 ζ ( x , y ) ,
a 32 ( 2 ) = ζ ( x , y ) Ω c d 32 [ | ζ ( x , y ) | 2 D * ( a 11 ( 2 ) + 2 a 22 ( 2 ) ) ] ,
σ ˜ j j ( z , t ) = d x d y | ζ ( x , y ) | 2 σ j j ( x , y , z , t ) d x d y | ζ ( x , y ) | 2 , ( j = 1 , 2 , 3 )
σ ˜ 21 ( z , t ) = d x d y | ζ ( x , y ) | 2 σ 21 ( x , y , z , t ) d x d y | ζ ( x , y ) | 2 ,
σ ˜ 31 ( 32 ) ( z , t ) ζ ( x , y ) = σ 31 ( 32 ) ( x , y , z , t ) ,
i t σ ˜ 11 i Γ 13 σ ˜ 33 + ρ Ω s * σ ˜ 31 ρ Ω s σ ˜ 31 * = 0 ,
i t σ ˜ 22 i Γ 23 σ ˜ 33 + ρ Ω c * σ ˜ 32 ρ Ω c σ ˜ 32 * = 0 ,
i t σ ˜ 33 + i Γ 3 σ ˜ 33 ρ Ω s * σ ˜ 31 + ρ Ω s σ ˜ 31 * ρ Ω c * σ ˜ 32 + ρ Ω c σ ˜ 32 * = 0 ,
( i t + d 21 ) σ ˜ 21 ρ Ω s σ ˜ 32 * + ρ Ω c * σ ˜ 31 = 0 ,
( i t + d 31 ) σ ˜ 31 Ω s ( σ ˜ 33 σ ˜ 11 ) + Ω c σ ˜ 21 = 0 ,
( i t + d 32 ) σ ˜ 32 Ω c ( σ ˜ 33 σ ˜ 22 ) + Ω s σ ˜ 21 * = 0 ,

Metrics