Abstract

We present the design, fabrication and characterization of efficient fiber-to-chip grating couplers on a Germanium-on-Silicon (Ge-on-Si) and Germanium-on-silicon-on-insulator (Ge-on-SOI) platform in the 5 µm wavelength range. The best grating couplers on Ge-on-Si and Ge-on-SOI have simulated coupling efficiencies of -4 dB (40%) with a 3 dB bandwidth of 180 nm and -1.5 dB (70%) with a 3 dB bandwidth of 200 nm, respectively. Experimentally, we show a maximum efficiency of -5 dB (32%) and a 3 dB bandwidth of 100 nm for Ge-on-Si grating couplers, and a -4 dB (40%) efficiency with a 3 dB bandwidth of 180 nm for Ge-on-SOI couplers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler

Wesley D. Sacher, Ying Huang, Liang Ding, Benjamin J. F. Taylor, Hasitha Jayatilleka, Guo-Qiang Lo, and Joyce K. S. Poon
Opt. Express 22(9) 10938-10947 (2014)

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens
Opt. Express 18(17) 18278-18283 (2010)

Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared

Aditya Malik, Sarvagya Dwivedi, Liesbet Van Landschoot, Muhammad Muneeb, Yosuke Shimura, Guy Lepage, Joris Van Campenhout, Wendy Vanherle, Tinneke Van Opstal, Roger Loo, and Gunther Roelkens
Opt. Express 22(23) 28479-28488 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
    [Crossref]
  2. J. Hodgkinson and R. P. Tatam, “Optical gas sensing : a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
    [Crossref]
  3. M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
    [Crossref]
  4. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
    [Crossref] [PubMed]
  5. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
    [Crossref]
  6. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
    [Crossref] [PubMed]
  7. J. M. Ramirez, V. Vakarin, C. Gilles, J. Frigerio, A. Ballabio, P. Chaisakul, X. Le Roux, C. Alonso-Ramos, G. Maisons, L. Vivien, M. Carras, G. Isella, and D. Marris-Morini, “Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics,” Opt. Lett. 42(1), 105–108 (2017).
    [Crossref] [PubMed]
  8. L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-Infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23(25), 32202–32214 (2015).
    [Crossref] [PubMed]
  9. R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010).
    [Crossref]
  10. A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. S. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, and T. Van Opstal, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
    [Crossref] [PubMed]
  11. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
    [Crossref]
  12. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
    [Crossref]
  13. P. Barritault, M. Brun, P. Labeye, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 µm,” Opt. Express 23(20), 26168–26181 (2015).
    [Crossref] [PubMed]
  14. A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
    [Crossref]
  15. S. Radosavljevic, B. Kuyken, and G. Roelkens, “A fiber-to-chip grating goupler for the Ge-on-Si platform at 5 µm wavelength,” ECIO Proceedings (to be published).
  16. M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
    [Crossref]
  17. C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
    [Crossref] [PubMed]
  18. J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).
  19. Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
    [Crossref]
  20. M. Brun, P. Labeye, G. Grand, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22(1), 508–518 (2014).
    [Crossref] [PubMed]
  21. B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
    [Crossref] [PubMed]
  22. B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Lett. 22(20), 23990–24003 (2014).
  23. R. Shankar, I. Bulu, and M. Lonĉar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
    [Crossref]
  24. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, and L. J. Mawst, “Quantum cascade laser on silicon,” Optica 3(5), 545–551 (2016).
    [Crossref]
  25. B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
    [Crossref]
  26. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [Crossref]
  27. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  28. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
    [Crossref]
  29. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
    [Crossref] [PubMed]
  30. C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
    [Crossref] [PubMed]
  31. http://www.spectralcalc.com/spectral_browser/db_intensity.php
  32. https://www.thorlabs.com/navigation.cfm .

2017 (1)

2016 (6)

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, and L. J. Mawst, “Quantum cascade laser on silicon,” Optica 3(5), 545–551 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

2015 (3)

2014 (3)

2013 (4)

R. Shankar, I. Bulu, and M. Lonĉar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
[Crossref] [PubMed]

2012 (3)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing : a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

2011 (1)

2010 (5)

2007 (1)

2005 (1)

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

1998 (1)

P. A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Absil, P.

Adler, F.

Allioux, D.

Alonso-Ramos, C.

Antelius, M.

Asher, W.

Ayre, M.

Baehr-Jones, T.

Baets, R.

Ballabio, A.

Barritault, P.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

P. Barritault, M. Brun, P. Labeye, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 µm,” Opt. Express 23(20), 26168–26181 (2015).
[Crossref] [PubMed]

Benedikovic, D.

Bewley, W. W.

Bogaerts, W.

Boulila, F.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

P. Barritault, M. Brun, P. Labeye, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 µm,” Opt. Express 23(20), 26168–26181 (2015).
[Crossref] [PubMed]

M. Brun, P. Labeye, G. Grand, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22(1), 508–518 (2014).
[Crossref] [PubMed]

Boutami, S.

J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

Brianceau, P.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

Briles, T. C.

Brun, M.

Bucio, T. D.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, and M. Lonĉar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Carletti, L.

Carras, M.

Chaisakul, P.

Cheben, P.

Chen, X.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Chen, Y. M.

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Christy, K. X.

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Cossel, K. C.

Davenport, M. L.

Delâge, A.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Duan, G.

J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Durantin, C.

J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Favreau, J.

J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Fédéli, J.

J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Foltynowicz, A.

Frigerio, J.

Fung, C. K. Y.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Fung, K. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Gardes, F. Y.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Gilles, C.

Grand, G.

Grillet, C.

Gylfason, K. B.

Hartl, I.

Hartmann, J.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

P. Barritault, M. Brun, P. Labeye, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 µm,” Opt. Express 23(20), 26168–26181 (2015).
[Crossref] [PubMed]

M. Brun, P. Labeye, G. Grand, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22(1), 508–518 (2014).
[Crossref] [PubMed]

Hartmann, J. M.

Hochberg, M.

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing : a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Ilic, R.

Isella, G.

Jiang, J. H.

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

Khokhar, A. Z.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Lett. 22(20), 23990–24003 (2014).

Kim, C. S.

Kirch, J.

Koshkinbayeva, A.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

Krauss, T. F.

Kuyken, B.

S. Radosavljevic, B. Kuyken, and G. Roelkens, “A fiber-to-chip grating goupler for the Ge-on-Si platform at 5 µm wavelength,” ECIO Proceedings (to be published).

Labeye, P.

Lartigue, O.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

Le Roux, X.

Lepage, G.

Li, C.

C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
[Crossref] [PubMed]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Littlejohns, C. G.

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Lo, G. Q.

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Loncar, M.

R. Shankar, I. Bulu, and M. Lonĉar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Loo, R.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Maisons, G.

Malik, A.

A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. S. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, and T. Van Opstal, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Marris-Morini, D.

Mashanovich, G.

Mashanovich, G. Z.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Lett. 22(20), 23990–24003 (2014).

Maslowski, P.

Mawst, L. J.

Merritt, C. D.

Meyer, J. R.

Mitchell, C. J.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Monat, C.

Moss, D. J.

Muneeb, M.

A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. S. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, and T. Van Opstal, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Nedeljkovic, M.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Lett. 22(20), 23990–24003 (2014).

A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. S. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, and T. Van Opstal, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

Nicoletti, S.

Nordin, G. P.

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

Orobtchouk, R.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-Infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23(25), 32202–32214 (2015).
[Crossref] [PubMed]

Ortiz, S.

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-Infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23(25), 32202–32214 (2015).
[Crossref] [PubMed]

Passaro, V. M.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Lett. 22(20), 23990–24003 (2014).

Pathak, S.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Penades, J. S.

Penadés, J. S.

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Penkov, B.

Pérez-Galacho, D.

Peters, J.

Radosavljevic, S.

Ramirez, J. M.

Roelkens, G.

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

S. Radosavljevic, B. Kuyken, and G. Roelkens, “A fiber-to-chip grating goupler for the Ge-on-Si platform at 5 µm wavelength,” ECIO Proceedings (to be published).

Schrauwen, J.

Selvaraja, S.

Shankar, R.

R. Shankar, I. Bulu, and M. Lonĉar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Shimura, Y.

A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. S. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, and T. Van Opstal, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Sinobad, M.

Sohlström, H.

Soref, R.A.

R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010).
[Crossref]

Spott, A.

Stankovic, S.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Stanton, E. J.

Taillaert, D.

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing : a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Troia, B.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Lett. 22(20), 23990–24003 (2014).

Tsang, H. K.

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Vakarin, V.

Van Campenhout, J.

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Van Laere, F.

Van Opstal, T.

Van Thourhout, D.

Vanherle, W.

Velasco, A. V.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Verheyen, P.

Vermeulen, D.

Vivien, L.

Vurgaftman, I.

Wang, B.

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

Werle, P. A.

P. A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Ye, J.

Yu, M.

Yu, Y.

Zhang, H.

Appl. Phys. Lett. (2)

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

R. Shankar, I. Bulu, and M. Lonĉar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

IEEE Photon. J. (2)

Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (6)

A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing : a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Nat. Photon (1)

R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010).
[Crossref]

Opt. Express (9)

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
[Crossref] [PubMed]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
[Crossref] [PubMed]

C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
[Crossref] [PubMed]

M. Brun, P. Labeye, G. Grand, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22(1), 508–518 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. S. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, and T. Van Opstal, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

P. Barritault, M. Brun, P. Labeye, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 µm,” Opt. Express 23(20), 26168–26181 (2015).
[Crossref] [PubMed]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-Infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23(25), 32202–32214 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Proc. SPIE (1)

J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Spectrochim. Acta Mol. Biomol. Spectrosc. (1)

P. A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Other (3)

S. Radosavljevic, B. Kuyken, and G. Roelkens, “A fiber-to-chip grating goupler for the Ge-on-Si platform at 5 µm wavelength,” ECIO Proceedings (to be published).

http://www.spectralcalc.com/spectral_browser/db_intensity.php

https://www.thorlabs.com/navigation.cfm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the grating structures designed on the Ge-on-Si (a) and Ge-on-SOI (b) waveguide platform.

Fig. 2
Fig. 2

Vector diagram of a second order Ge-on-Si grating (a) and a fourth order Ge-on-SOI grating (b) with the buried oxide layer locally removed. The allowed diffraction orders in air (solid arrows) and Si under-cladding (dashed arrows) are also indicated.

Fig. 3
Fig. 3

The measurement setup. A control PC sets the wavelength of the QCL in CW mode through the QCL controller. The light from the laser goes through the Babinet-Soleil polarization control element and the chopper that turns the QCL output into a 50% pulsed signal which is then coupled to the single mode InF fiber by a chalcogenide objective lens. The device transmission is measured by a pre-amplified InSb detector and a lock-in amplifier that receives the reference from the chopper and sends the detected signal back to the control PC. A wire grid polarizer and a thermal detector are used to determine the fraction of light in the TM polarization at the input of the grating. The QCL power is measured on the InSb detector, by connecting directly the two fiber connectors - dashed grey line on diagram.

Fig. 4
Fig. 4

Cross-section (a) and top view of the optimized Ge-on-Si grating coupler (c). Simulation (b) and measured data of the same device (d).

Fig. 5
Fig. 5

Maximum coupling efficiency in the 5–5.6 µm wavelength range for the Ge-on-Si grating coupler as a function of the grating etch depth and fiber angle (a) and as a function of thickness of the Ge layer and fiber angle (b).

Fig. 6
Fig. 6

SEM image of the locally free-standing Ge-on-SOI grating coupler (a). Simulation (b) and measured data of the same device (c).

Fig. 7
Fig. 7

Maximum fiber-to-chip coupling efficiency in the 5 to 5.6 µm wavelength range for the Ge-on-SOI grating coupler depending on different parameters: Si and SiO2 layer thickness (a), grating etch depth and fiber angle (b) and the thickness of the Ge waveguide layer vs. fiber angle (c).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p ( n e + n f ) / 2 = w e n e + w f n f
η ( λ ) [ d B ] = 10 l o g 10 P t r a n s ( λ ) P Q C L ( λ ) R T M ( λ ) + A f i b e r ( λ ) [ d B ] + 3 d B .

Metrics