Abstract

Two-dimensional electronic spectroscopy (2DES) is an incisive tool for disentangling excited state energies and dynamics in the condensed phase by directly mapping out the correlation between excitation and emission frequencies as a function of time. Despite its enhanced frequency resolution, the spectral window of detection is limited to the laser bandwidth, which has often hindered the visualization of full electronic energy relaxation pathways spread over the entire visible region. Here, we describe a high-sensitivity, ultrabroadband 2DES apparatus. We report a new combination of a simple and robust setup for increased spectral bandwidth and shot-to-shot detection. We utilize 8-fs supercontinuum pulses generated by gas filamentation spanning the entire visible region (450 – 800 nm), which allows for a simultaneous interrogation of electronic transitions over a 200-nm bandwidth, and an all-reflective interferometric delay system with angled nanopositioner stages achieves interferometric precision in coherence time control without introducing wavelength-dependent dispersion to the ultrabroadband spectrum. To address deterioration of detection sensitivity due to the inherent instability of ultrabroadband sources, we introduce a 5-kHz shot-to-shot, dual chopping acquisition scheme by combining a high-speed line-scan camera and two optical choppers to remove scatter contributions from the signal. Comparison of 2D spectra acquired by shot-to-shot detection and averaged detection shows a 15-fold improvement in the signal-to-noise ratio. This is the first direct quantification of detection sensitivity on a filamentation-based ultrabroadband 2DES apparatus.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid and economical data acquisition in ultrafast frequency-resolved spectroscopy using choppers and a microcontroller

Liang Guo, Daniele M. Monahan, and Graham Fleming
Opt. Express 24(16) 18126-18132 (2016)

Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression

Xiaonan Ma, Jakub Dostál, and Tobias Brixner
Opt. Express 24(18) 20781-20791 (2016)

Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz

Nicholas M. Kearns, Randy D. Mehlenbacher, Andrew C. Jones, and Martin T. Zanni
Opt. Express 25(7) 7869-7883 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
    [Crossref] [PubMed]
  2. N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
    [Crossref] [PubMed]
  3. F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
    [PubMed]
  4. J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
    [Crossref] [PubMed]
  5. A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
    [Crossref]
  6. Y.-C. Cheng and G. R. Fleming, “Dynamics of light harvesting in photosynthesis,” Annu. Rev. Phys. Chem. 60, 241–262 (2009).
    [Crossref]
  7. G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386(1), 1–22 (2011).
    [Crossref]
  8. J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
    [Crossref]
  9. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
    [Crossref] [PubMed]
  10. S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
    [Crossref] [PubMed]
  11. D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
    [Crossref] [PubMed]
  12. J. Kasprzak and W. Langbein, “Coherent response of individual weakly confined exciton–biexciton systems,” J. Opt. Soc. Am. B 29(7), 1766–1771 (2012).
    [Crossref]
  13. J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
    [Crossref] [PubMed]
  14. E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
    [Crossref] [PubMed]
  15. R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
    [Crossref] [PubMed]
  16. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3), 307–313 (1998).
    [Crossref]
  17. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
    [Crossref]
  18. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
    [Crossref] [PubMed]
  19. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1), 184–189 (2004).
    [Crossref]
  20. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
    [Crossref] [PubMed]
  21. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
    [Crossref] [PubMed]
  22. A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
    [Crossref] [PubMed]
  23. E. Harel, A. F. Fidler, and G. S. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107(38), 16444–16447 (2010).
    [Crossref] [PubMed]
  24. L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
    [Crossref] [PubMed]
  25. N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869–7883 (2017).
    [Crossref] [PubMed]
  26. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997).
    [Crossref]
  27. H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
    [Crossref] [PubMed]
  28. A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. Van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
    [Crossref] [PubMed]
  29. B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
    [Crossref] [PubMed]
  30. X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollowcore fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
    [Crossref] [PubMed]
  31. H. Seiler, S. Palato, B. E. Schmidt, and P. Kambhampati, “Simple fiber-based solution for coherent multidimensional spectroscopy in the visible regime,” Opt. Lett. 42(3), 643–646 (2017).
    [Crossref] [PubMed]
  32. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).
    [Crossref]
  33. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
    [Crossref]
  34. C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
    [Crossref]
  35. F. Hagemann, O. Gause, L. Wöste, and T. Siebert, “Supercontinuum pulse shaping in the few-cycle regime,” Opt. Express 21(5), 5536–5549 (2013).
    [Crossref] [PubMed]
  36. D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78(10), 103108 (2007).
    [Crossref] [PubMed]
  37. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
    [Crossref] [PubMed]
  38. J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
    [Crossref] [PubMed]
  39. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
    [Crossref] [PubMed]
  40. I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
    [Crossref] [PubMed]
  41. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
    [Crossref] [PubMed]
  42. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
    [Crossref]
  43. Y. Zhang, K. Meyer, C. Ott, and T. Pfeifer, “Passively phase-stable, monolithic, all-reflective two-dimensional electronic spectroscopy based on a four-quadrant mirror,” Opt. Lett. 38(3), 356–358 (2013).
    [Crossref] [PubMed]
  44. V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
    [Crossref] [PubMed]
  45. A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, “All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy,” Opt. Express 16(22), 18017–18027 (2008).
    [Crossref] [PubMed]
  46. H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
    [Crossref]
  47. N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
    [Crossref]

2017 (2)

2016 (2)

X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollowcore fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
[Crossref] [PubMed]

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

2015 (8)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. Van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

2014 (5)

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref] [PubMed]

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

2013 (3)

2012 (1)

2011 (2)

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386(1), 1–22 (2011).
[Crossref]

2010 (2)

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

E. Harel, A. F. Fidler, and G. S. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107(38), 16444–16447 (2010).
[Crossref] [PubMed]

2009 (8)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
[Crossref] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
[Crossref] [PubMed]

Y.-C. Cheng and G. R. Fleming, “Dynamics of light harvesting in photosynthesis,” Annu. Rev. Phys. Chem. 60, 241–262 (2009).
[Crossref]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78(10), 103108 (2007).
[Crossref] [PubMed]

2006 (1)

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

2004 (3)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1), 184–189 (2004).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

2001 (1)

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

1998 (1)

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3), 307–313 (1998).
[Crossref]

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997).
[Crossref]

1989 (1)

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Abramavicius, D.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Ahmad, I.

Al Haddad, A.

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3), 307–313 (1998).
[Crossref]

Albrecht Ferro, A.

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).
[Crossref]

Arnold, M. S.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Arrell, C.

Auböck, G.

Augulis, R.

Bakulin, A. A.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Becker, P. C.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Biegert, J.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Bigot, J.-Y.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Bizimana, L. A.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Brazard, J.

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Bristow, A. D.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, “All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy,” Opt. Express 16(22), 18017–18027 (2008).
[Crossref] [PubMed]

Brixner, T.

Butkus, V.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Camargo, F. V.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Caram, J. R.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

Carbery, W. P.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Cassette, E.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Caycedo-Soler, F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Cerullo, G.

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78(10), 103108 (2007).
[Crossref] [PubMed]

Chauvet, A.

Cheng, Y.-C.

Y.-C. Cheng and G. R. Fleming, “Dynamics of light harvesting in photosynthesis,” Annu. Rev. Phys. Chem. 60, 241–262 (2009).
[Crossref]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Chergui, M.

Chin, A. W.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

Coleman, V.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Couairon, A.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1), 184–189 (2004).
[Crossref]

Cundiff, S. T.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, “All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy,” Opt. Express 16(22), 18017–18027 (2008).
[Crossref] [PubMed]

Dahlberg, P. D.

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

Dai, X.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, “All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy,” Opt. Express 16(22), 18017–18027 (2008).
[Crossref] [PubMed]

Davis, J. A.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Dimler, F.

Dolzhnikov, D. S.

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

Dostál, J.

Eck, R.

Egorova, D.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

Engel, G. S.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

E. Harel, A. F. Fidler, and G. S. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107(38), 16444–16447 (2010).
[Crossref] [PubMed]

Faeder, S. M. G.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3), 307–313 (1998).
[Crossref]

Fidler, A. F.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

E. Harel, A. F. Fidler, and G. S. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107(38), 16444–16447 (2010).
[Crossref] [PubMed]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Fleming, G. R.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386(1), 1–22 (2011).
[Crossref]

Y.-C. Cheng and G. R. Fleming, “Dynamics of light harvesting in photosynthesis,” Annu. Rev. Phys. Chem. 60, 241–262 (2009).
[Crossref]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Fragnito, H. L.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Gause, O.

Gellen, T.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Gelzinis, A.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Gieseking, B.

Ginsberg, N. S.

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Grechko, M.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Griffin, G. B.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Hagemann, F.

Halpin, A.

Hannaford, P.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Harel, E.

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

E. Harel, A. F. Fidler, and G. S. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107(38), 16444–16447 (2010).
[Crossref] [PubMed]

Hauer, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

Hauri, C.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Heinrich, A.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Heisler, I. A.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Helbing, F.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Huelga, S. F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Hybl, J. D.

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3), 307–313 (1998).
[Crossref]

Inoue, M.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Ishizaki, A.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386(1), 1–22 (2011).
[Crossref]

Jagadish, C.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3), 307–313 (1998).
[Crossref]

Jones, A. C.

Kambhampati, P.

Kanal, F.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Karaiskaj, D.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, “All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy,” Opt. Express 16(22), 18017–18027 (2008).
[Crossref] [PubMed]

Kasprzak, J.

Kauffmann, H. F.

Kearns, N. M.

Kehoe, T. B.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

Keiber, S.

Keller, U.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Khadivi, A.

Koh, C. J.

Koike, K.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Kornelis, W.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Krausz, F.

Krebs, N.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Langbein, W.

Langhojer, F.

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Lim, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lincoln, C. N.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Löhrig, T.

Lüer, L.

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78(10), 103108 (2007).
[Crossref] [PubMed]

Ma, X.

Mahler, B.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Mancal, T.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

McDonough, T. J.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Meech, S. R.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Mehlenbacher, R. D.

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869–7883 (2017).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Meyer, K.

Miller, R. J. D.

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1), 184–189 (2004).
[Crossref]

Milota, F.

Mirin, R. P.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

Moca, R.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Morgan, S. E.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

Mukamel, S.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

Mysyrowicz, A.

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Nelson, K. A.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Nemeth, A.

Ogilvie, J. P.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1), 184–189 (2004).
[Crossref]

Ojeda, J.

Ott, C.

Palato, S.

Palecek, D.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Pan, J.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Pensack, R. D.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Pervak, V.

Pfeifer, T.

Piel, J.

Plenio, M. B.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Polli, D.

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78(10), 103108 (2007).
[Crossref] [PubMed]

Prior, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Prokhorenko, V. I.

Pugliesi, I.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Rao, A.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Riedle, E.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997).
[Crossref]

Rolczynski, B. S.

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

Sasa, S.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Schlau-Cohen, G. S.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386(1), 1–22 (2011).
[Crossref]

Schmidt, B. E.

Scholes, G. D.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Schwarz, C.

Seiler, H.

Selig, U.

Senlik, S. S.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Shank, C. V.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Siebert, T.

Sperling, J.

Spokoyny, B.

Stiopkin, I. V.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Talapin, D. V.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

Tan, H.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Tikhonravov, A. V.

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Trubetskov, M. K.

Turner, D. B.

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Valkunas, L.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Van Dao, L.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Van Mourik, F.

Viswanathan, S.

von Berlepsch, H.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Wen, X.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Wilcox, D. E.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Wilhelm, T.

Wilson, M. W. B.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

Wöste, L.

Wu, M.-Y.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Yang, L.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

Yano, M.

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Yocum, C. F.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Zanni, M. T.

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869–7883 (2017).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Zhang, T.

S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
[Crossref] [PubMed]

Zhang, Y.

Zheng, H.

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

Zigmantas, D.

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

Acc. Chem. Res. (2)

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (3)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

Y.-C. Cheng and G. R. Fleming, “Dynamics of light harvesting in photosynthesis,” Annu. Rev. Phys. Chem. 60, 241–262 (2009).
[Crossref]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Appl. Phys. Lett. (1)

J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett. 89(18), 182109 (2006).
[Crossref]

Chem. Phys. (1)

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386(1), 1–22 (2011).
[Crossref]

Chem. Phys. Lett. (3)

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3), 307–313 (1998).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1), 184–189 (2004).
[Crossref]

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

J. Chem. Phys. (3)

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent inter-excitonic quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204 (2014).
[Crossref] [PubMed]

Nat. Chem. (2)

A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, “Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy,” Nat. Chem. 8(1), 16–23 (2016).
[Crossref]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Nat. Commun. (3)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Opt. Express (8)

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, “All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy,” Opt. Express 16(22), 18017–18027 (2008).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869–7883 (2017).
[Crossref] [PubMed]

F. Hagemann, O. Gause, L. Wöste, and T. Siebert, “Supercontinuum pulse shaping in the few-cycle regime,” Opt. Express 21(5), 5536–5549 (2013).
[Crossref] [PubMed]

X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollowcore fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
[Crossref] [PubMed]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref] [PubMed]

Opt. Lett. (7)

H. Seiler, S. Palato, B. E. Schmidt, and P. Kambhampati, “Simple fiber-based solution for coherent multidimensional spectroscopy in the visible regime,” Opt. Lett. 42(3), 643–646 (2017).
[Crossref] [PubMed]

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997).
[Crossref]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. Van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
[Crossref] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

Y. Zhang, K. Meyer, C. Ott, and T. Pfeifer, “Passively phase-stable, monolithic, all-reflective two-dimensional electronic spectroscopy based on a four-quadrant mirror,” Opt. Lett. 38(3), 356–358 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104(11), 117401 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

E. Harel, A. F. Fidler, and G. S. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107(38), 16444–16447 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (4)

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78(10), 103108 (2007).
[Crossref] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Science (1)

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Other (1)

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Pulse sequence of a 2DES experiment. Time zero is arbitrarily set to the point where pulses 1 – 3 are coincident on the sample. The local oscillator (LO) is temporally delayed to precede the other three pulses to prevent pump-probe background from interfering with 2D signal. (b) Optical layout of the ultrabroadband 2DES setup. L1 and L2 – focusing and collimating lenses (f = 1000 mm); DCM – shortpass dichroic mirror (805 nm cutoff); GF – glass filters; CM1 and CM2 – chirped mirror pairs; SM1 and SM2 – spherical (concave) mirrors (f = 150 mm and 75 mm); SM3 and SM4 – spherical (concave) mirrors (f = 250 mm); BS1 and BS2 – 50:50 beam splitters; CW1 and CW2 – compensating windows (1-mm UV fused silica); RR1 and RR2 – retroreflectors; C1 and C2 – optical choppers; ND – neutral density filter (OD 3); SC – sample cell. The all-reflective interferometric delay (ARID) assembly is marked with a gray, dashed box. (c) Spectrum of the ultrabroadband light source measured after spectral filtering. Inset shows the initial broadened spectrum before filtering. (d) Left: TG-FROG trace of the ultrabroadband pulse measured at the sample position. Right: Temporal intensity (black solid line) fitted with a Gaussian function (red) and phase (black dashed line) profiles retrieved from FROG. The pulse FWHM was measured to be 8 fs.
Fig. 2
Fig. 2 Schematic of the ARID assembly. (a) Side view and (b) top view. The top two mirrors and the top plate are omitted for clarity.
Fig. 3
Fig. 3 (a) Spectral interferogram of beams 1 and 2 measured every minute over 10 hours. (b) Phase retrieved from the spectral interferogram at 575 nm. The long-term standard deviation (σ) of the phase is 84 mrad, corresponding to a long-term phase stability of ∼λ/75. Inset: Short-term phase stability measured every 20 seconds over 20 minutes. (c) Time slices of the spectral interferogram (displayed with vertical offset for clarity). The middle (green) and the top (blue) spectra were recorded one hour and 10 hours after the bottom spectrum (black), respectively. A vertical dashed line at 620 nm is shown as a guide to the eye.
Fig. 4
Fig. 4 (a) Schematic drawing of the hardware in the detection part. The TTL output signals of our laser (1) and two choppers (2, 3) serve as a trigger input of the microcontroller. The microcontroller output (4) is wired to the frame grabber input port, which receives the AND gate signal from the microcontroller and triggers data acquisition. (b) Illustration of dual chopping. 2D signal is emitted only in the shaded parts of the sequence, where beams 1– 3 are all unblocked. (c) Electronic input/output signals of each hardware component as marked in (a) and their synchronization with CCD acquisition. Wait time denotes the interval between frames when no image acquisition occurs. This ensures that every frame acquisition is synchronized to the pulse sequence A – D in the correct order.
Fig. 5
Fig. 5 (a) 2D amplitude spectrum of Nile Blue A perchlorate at a waiting time (T) of 200 fs. The overlay of the laser spectrum (shaded orange area) with the dye linear absorption (black line) is shown above the 2D spectrum. On the right, we plot the pump-probe (red) and the projected 2D spectrum (black) phased using the pump-probe spectrum. (b) Real (absorptive) 2D spectrum of Nile Blue A perchlorate after phasing.
Fig. 6
Fig. 6 (a) Absorptive 2D spectrum of Nile Blue A perchlorate at T = 200 fs. The open circles indicate the three points monitored for oscillations in waiting time dynamics. (ωτ, ωt) = (16300 cm−1, 15100 cm−1) (blue); (15000 cm−1, 14500 cm−1) (green); (15600 cm−1, 15000 cm−1) (black). (b) Plot of oscillations along waiting time observed at the three exemplary points marked in (a). (c) Fourier-transformed power spectra of the oscillations in (b).
Fig. 7
Fig. 7 Schematic illustration of the shot-to-shot and averaged data acquisition schemes for k consecutive laser shots.
Fig. 8
Fig. 8 (a) Comparison of the 2D data of Nile Blue A perchlorate at T = 200 fs acquired with Scheme 1 (left) and Scheme 2 (right), using 1024 laser shots. (b) Normalized raw time-domain signals at emission frequencies of 15500 cm−1 (black) and 16600 cm−1 (grey) and their noise. The two probed frequencies are marked as arrows in (a). The noise σ was evaluated for τ > 75 fs (marked as red boxes).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S R ( ω ) = χ ^ ( 3 ) ( ω R ; ω 1 , ω 2 , ω 3 ) | E ( ω ) | 4 e i ω ( t 1 + t 2 + t 3 t LO ) e i ω ( φ 1 + φ 2 + φ 3 φ LO ) ,
φ R = i ω ( t 1 + t 2 + t 3 t LO ) + i ω ( φ 1 + φ 2 + φ 3 φ LO ) .
Δ φ R = φ 1 + φ 2 + φ 3 φ LO = ( φ 2 φ 1 ) + ( φ 3 φ LO ) .
δ ( Δ φ R ) = ( δ φ 2 δ φ 1 ) + ( δ φ 3 δ φ LO ) .
δ ( Δ φ R ) = ( δ φ M 2 δ φ M 1 ) + ( δ φ M 3 δ φ M LO ) .
P P ( T , ω t ) = Re { S 2 D ( ω τ , T , ω t ) exp ( i ( ϕ + ( ω t ω 0 ) t c + ( ω t ω 0 ) 2 t q 2 + ( ω τ ω 0 ) τ c ) ) d ω τ } ,

Metrics