Abstract

We report a novel optical resolution photoacoustic microscopy concept to obtain an axial resolution only by optical methods. The photoacoustic signal is generated through a non-radiative relaxation from a level that is populated by excited state absorption. This two-step excitation process of a single laser enables to achieve an optical sectioning without any acoustic selectivity, whereby a full optical resolution photoacoustic microscopy is obtained. We bring a proof of this concept using Rhodamine and Zinc Tetraphenylporphyrin dyes known for their efficient excited state absorption process.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

10 August 2017: A typographical correction was made to Fig. 5.


OSA Recommended Articles
Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium–sapphire laser

A. Fischer, C. Cremer, and E. H. K. Stelzer
Appl. Opt. 34(12) 1989-2003 (1995)

Excited-state absorption and anisotropy properties of two-photon absorbing fluorene derivatives

Kevin D. Belfield, Mykhailo V. Bondar, I. Cohanoschi, Florencio E. Hernandez, Oleksiy D. Kachkovsky, Olga V. Przhonska, and Sheng Yao
Appl. Opt. 44(33) 7232-7238 (2005)

Enhanced optical limiting and nonlinear absorption properties of azoarene-appended phosphorus (V) tetratolylporphyrins

P. Prem Kiran, D. Raghunath Reddy, Bhaskar G. Maiya, Aditya K. Dharmadhikari, G. Ravindra Kumar, and Narayana Rao Desai
Appl. Opt. 41(36) 7631-7636 (2002)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21(1), 127–131 (1994).
    [Crossref] [PubMed]
  2. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63(6), 545–563 (1996).
    [Crossref]
  3. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36(1), 402–415 (1997).
    [Crossref] [PubMed]
  4. P. Beard, “Biomedical photoacoustic imaging,” Interface focus, rsfs20110028 (2011).
  5. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  6. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  7. S. Hu and L. V. Wang, “Neurovascular photoacoustic tomography,” Front. Neuroenergetics 2, 10 (2010).
    [PubMed]
  8. S. Hu and L. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105(4), 841–847 (2013).
    [Crossref] [PubMed]
  9. E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single Cell Photoacoustic Microscopy: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
    [Crossref]
  10. J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), 41–48 (1987).
    [Crossref] [PubMed]
  11. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  12. S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
    [Crossref] [PubMed]
  13. Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express 19(14), 13365–13377 (2011).
    [Crossref] [PubMed]
  14. P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic Observation of Excited Singlet-State Absorption in the Laser-Dye Rhodamine 6g,” J. Phys. D Appl. Phys. 27(10), 2019–2022 (1994).
    [Crossref]
  15. K. Rurack, Standardization and Quality Assurance in Fluorescence Measurements I, 1st ed. (Springer, 2008).
  16. P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Laser flash photolysis studies of some rhodamine dyes - Characterisation of the lowest excited singlet state of Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101,” J. Chem. Soc., Faraday Trans. 94(2), 195–199 (1998).
    [Crossref]
  17. J. Wiedmann and A. Penzkofer, “Excited-State Absorption Cross-Sections in Rhodamine Dyes Determined after Molecular-Reorientation,” Nuovo Cimento B 63(1), 459–469 (1981).
    [Crossref]
  18. A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
    [Crossref]
  19. M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
    [Crossref] [PubMed]
  20. N. Srinivas, S. V. Rao, and D. N. Rao, “Saturable and reverse saturable absorption of rhodamine B in methanol and water,” J. Opt. Soc. Am. B 20(12), 2470–2479 (2003).
    [Crossref]
  21. J. M. Héritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photo-Acoustic Detection,” Opt. Commun. 44(4), 267–272 (1983).
    [Crossref]
  22. L. Wang, C. Zhang, and L. V. Wang, “Grueneisen Relaxation Photoacoustic Microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
    [Crossref] [PubMed]
  23. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
    [Crossref]
  24. T. Lee and J. Guo, “Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
    [Crossref]
  25. T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
    [Crossref]
  26. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
    [Crossref] [PubMed]

2017 (1)

T. Lee and J. Guo, “Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

2016 (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single Cell Photoacoustic Microscopy: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

2015 (1)

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

2014 (3)

A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
[Crossref]

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen Relaxation Photoacoustic Microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

2013 (1)

S. Hu and L. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105(4), 841–847 (2013).
[Crossref] [PubMed]

2012 (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

S. Hu and L. V. Wang, “Neurovascular photoacoustic tomography,” Front. Neuroenergetics 2, 10 (2010).
[PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[Crossref] [PubMed]

2005 (1)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

2003 (1)

2001 (1)

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

1998 (1)

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Laser flash photolysis studies of some rhodamine dyes - Characterisation of the lowest excited singlet state of Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101,” J. Chem. Soc., Faraday Trans. 94(2), 195–199 (1998).
[Crossref]

1997 (1)

1996 (1)

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63(6), 545–563 (1996).
[Crossref]

1994 (2)

R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21(1), 127–131 (1994).
[Crossref] [PubMed]

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic Observation of Excited Singlet-State Absorption in the Laser-Dye Rhodamine 6g,” J. Phys. D Appl. Phys. 27(10), 2019–2022 (1994).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1987 (1)

J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), 41–48 (1987).
[Crossref] [PubMed]

1983 (1)

J. M. Héritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photo-Acoustic Detection,” Opt. Commun. 44(4), 267–272 (1983).
[Crossref]

1981 (1)

J. Wiedmann and A. Penzkofer, “Excited-State Absorption Cross-Sections in Rhodamine Dyes Determined after Molecular-Reorientation,” Nuovo Cimento B 63(1), 459–469 (1981).
[Crossref]

Amos, W. B.

J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), 41–48 (1987).
[Crossref] [PubMed]

Bag, S.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Beaumont, P. C.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Laser flash photolysis studies of some rhodamine dyes - Characterisation of the lowest excited singlet state of Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101,” J. Chem. Soc., Faraday Trans. 94(2), 195–199 (1998).
[Crossref]

Bellinger-Buckley, S.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Buma, T.

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Chehrghani, A.

A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
[Crossref]

Cheng, Y. H.

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Dantiste, O.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Esenaliev, R. O.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

Fordham, M.

J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), 41–48 (1987).
[Crossref] [PubMed]

Frenette, M.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Guo, J.

T. Lee and J. Guo, “Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

Hatamimoslehabadi, M.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Héritier, J. M.

J. M. Héritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photo-Acoustic Detection,” Opt. Commun. 44(4), 267–272 (1983).
[Crossref]

Hu, S.

S. Hu and L. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105(4), 841–847 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu and L. V. Wang, “Neurovascular photoacoustic tomography,” Front. Neuroenergetics 2, 10 (2010).
[PubMed]

Huang, K. C.

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Jacques, S. L.

Johnson, D. G.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Laser flash photolysis studies of some rhodamine dyes - Characterisation of the lowest excited singlet state of Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101,” J. Chem. Soc., Faraday Trans. 94(2), 195–199 (1998).
[Crossref]

Karabutov, A.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63(6), 545–563 (1996).
[Crossref]

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single Cell Photoacoustic Microscopy: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

Kruger, R. A.

R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21(1), 127–131 (1994).
[Crossref] [PubMed]

Lai, Y. H.

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Laoui, S.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Larin, K. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

Larina, I. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

Lee, S. Y.

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Lee, T.

T. Lee and J. Guo, “Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

Letokhov, V. S.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63(6), 545–563 (1996).
[Crossref]

Maslov, K.

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single Cell Photoacoustic Microscopy: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

Nambu, M.

Nampoori, V. P. N.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic Observation of Excited Singlet-State Absorption in the Laser-Dye Rhodamine 6g,” J. Phys. D Appl. Phys. 27(10), 2019–2022 (1994).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

O’Donnell, M.

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Oraevsky, A. A.

Parsons, B. J.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Laser flash photolysis studies of some rhodamine dyes - Characterisation of the lowest excited singlet state of Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101,” J. Chem. Soc., Faraday Trans. 94(2), 195–199 (1998).
[Crossref]

Penzkofer, A.

J. Wiedmann and A. Penzkofer, “Excited-State Absorption Cross-Sections in Rhodamine Dyes Determined after Molecular-Reorientation,” Nuovo Cimento B 63(1), 459–469 (1981).
[Crossref]

Philip, R.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic Observation of Excited Singlet-State Absorption in the Laser-Dye Rhodamine 6g,” J. Phys. D Appl. Phys. 27(10), 2019–2022 (1994).
[Crossref]

Podymova, N. B.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63(6), 545–563 (1996).
[Crossref]

Rao, D. N.

Rao, S. V.

Rochford, J.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Sathy, P.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic Observation of Excited Singlet-State Absorption in the Laser-Dye Rhodamine 6g,” J. Phys. D Appl. Phys. 27(10), 2019–2022 (1994).
[Crossref]

Spisar, M.

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Srinivas, N.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single Cell Photoacoustic Microscopy: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

Sun, C. K.

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Takamatsu, T.

Tittel, F. K.

Torkamany, M. J.

A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
[Crossref]

Tseng, T. F.

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Vallabhan, C. P. G.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic Observation of Excited Singlet-State Absorption in the Laser-Dye Rhodamine 6g,” J. Phys. D Appl. Phys. 27(10), 2019–2022 (1994).
[Crossref]

Wang, L.

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen Relaxation Photoacoustic Microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

Wang, L. V.

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen Relaxation Photoacoustic Microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

S. Hu and L. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105(4), 841–847 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu and L. V. Wang, “Neurovascular photoacoustic tomography,” Front. Neuroenergetics 2, 10 (2010).
[PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

White, J. G.

J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), 41–48 (1987).
[Crossref] [PubMed]

Wiedmann, J.

J. Wiedmann and A. Penzkofer, “Excited-State Absorption Cross-Sections in Rhodamine Dyes Determined after Molecular-Reorientation,” Nuovo Cimento B 63(1), 459–469 (1981).
[Crossref]

Yamaoka, Y.

Yelleswarapu, C.

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Zhang, C.

Adv. Opt. Mater. (1)

T. Lee and J. Guo, “Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63(6), 545–563 (1996).
[Crossref]

Appl. Phys. Lett. (1)

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Biophys. J. (1)

S. Hu and L. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105(4), 841–847 (2013).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, S. Bag, O. Dantiste, J. Rochford, and C. Yelleswarapu, “Nonlinear optical properties of multipyrrole dyes,” Chem. Phys. Lett. 608, 303–307 (2014).
[Crossref] [PubMed]

Front. Neuroenergetics (1)

S. Hu and L. V. Wang, “Neurovascular photoacoustic tomography,” Front. Neuroenergetics 2, 10 (2010).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single Cell Photoacoustic Microscopy: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

J. Cell Biol. (1)

J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), 41–48 (1987).
[Crossref] [PubMed]

J. Chem. Soc., Faraday Trans. (1)

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Laser flash photolysis studies of some rhodamine dyes - Characterisation of the lowest excited singlet state of Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101,” J. Chem. Soc., Faraday Trans. 94(2), 195–199 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic Observation of Excited Singlet-State Absorption in the Laser-Dye Rhodamine 6g,” J. Phys. D Appl. Phys. 27(10), 2019–2022 (1994).
[Crossref]

Laser Phys. (1)

A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
[Crossref]

Med. Phys. (1)

R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21(1), 127–131 (1994).
[Crossref] [PubMed]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Nuovo Cimento B (1)

J. Wiedmann and A. Penzkofer, “Excited-State Absorption Cross-Sections in Rhodamine Dyes Determined after Molecular-Reorientation,” Nuovo Cimento B 63(1), 459–469 (1981).
[Crossref]

Opt. Commun. (1)

J. M. Héritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photo-Acoustic Detection,” Opt. Commun. 44(4), 267–272 (1983).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen Relaxation Photoacoustic Microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Y. Lee, Y. H. Lai, K. C. Huang, Y. H. Cheng, T. F. Tseng, and C. K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Science (2)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (2)

P. Beard, “Biomedical photoacoustic imaging,” Interface focus, rsfs20110028 (2011).

K. Rurack, Standardization and Quality Assurance in Fluorescence Measurements I, 1st ed. (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectra of Rhodamine-6G and Rhodamine-101 in methanol. The arrow indicates the wavelength of laser excitation. Schematics shows energy-level diagram of a Rhodamine molecule. Excitation of the ground state S0 to the intermediate first excited state S1 and excited state absorption from S1 to the upper excited state S2 are given by the corresponding population (N0 and N1), absorption cross section (σ1 and σ2), and laser fluence (Φ), respectively. While the transition from S1 to S0 is described by fluorescence with radiative decay rate (Wr), the transition from S2 to S1 is converted to acoustic vibration with non-radiative decay rate (Wnr).

Fig. 2
Fig. 2

Population density of the intermediate state (N1) (a) and the upper excited state (N2) (b) are obtained for increasing laser fluence, where the saturation of N1 and N2 are fitted by a first- and a second-order saturation model, respectively.

Fig. 3
Fig. 3

(a) Schematics of experimental setup. (b) A typical photoacoustic signal generated from a Rhodamine 6G methanol solution under excitation of a 1ns-pulse laser with 532 nm wavelength.

Fig. 4
Fig. 4

(a) Fluorescence images in a highly diluted Rhodamine 101 solution under laser focusing, which is characterised in terms of beam waist (w0 = 1.5µm) at focus and pseudo Rayleigh length Z’R = 21 µm. Upper and lower images are of 50 nJ and 0.125 nJ laser excitation, respectively. (b) Integrated fluorescence intensity as a function of the distance from focus for various laser pulse energy. It is noticeable that the results are normalized by excitation pulse energy. (c) Square of the half width at half maximum (HWHM) for the signal dip in (b) is plotted for laser pulse energy, E, and fitted by HWHM2 = ZR(1 + E/Esat), whereby saturation energy, Esat, can be obtained.

Fig. 5
Fig. 5

(a) Photoacoustic signal generated in a 100 µm-thick film of Rhodamine-101 solution as a function of the distance (z). Dots are the experimental measurements and the solid curve is the best fit by a convolution of a Lorentzian (HWHM = 48µm) and a square function (100µm width) (b) Schematic drawing of experimental condition focus under 50 nJ excitation of 532nm laser, 1 ns pulse duration, w0 = 1.5µm for maximum fluence of 700 mJ/cm2, and length Z’R = 21 µm.

Fig. 6
Fig. 6

(a) z-dependence of photoacoustic signal in a 100µm-thick film of Rhodamine-6G solution (blue) is compared to that in a thin metallic film (black) under 13 nJ excitation (532 nm, 1 ns pulse duration, w0 = 2.5µm for maximum fluence of 66 mJ/cm2, and length Z’R = 60 µm). (b) Two z-dependence of normalized photoacoustic signals in a 100µm thick film of Rhodamine 6G solution under 300 nJ and 30 nJ laser excitations (532 nm, 1 ns pulse duration, w0 = 6 µm and length Z’R = 250 µm).

Fig. 7
Fig. 7

(a) Photoacoustic signal intensity of a solution of Zn:TPP in THF (tetrahydrofuran) is plotted for the square of the laser excitation energy, where the laser is focused by a 0.28 NA objective. (b) Photoacoustic signal intensity as a function of the laser focus position (Z) from the entrance of a large cell filled with a THF solution of ZnTPP, or an alcoholic solution of Cy3, where the laser energy at 532 nm is 10 nJ and focused by a 0.28 NA objective. (c) Derivative of the Zn:TPP photoacoustic signal as a function of the focus position. The solid line is a Lorentzian fit with a HWHM = 15 µm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N 0 + N 1 + N 2 = N ,
d N 0 d t = σ 1 Φ ( N 0 N 1 ) + W r N 1 ,
d N 1 d t = σ 1 Φ N 0 σ 2 Φ ( N 1 N 2 ) W r N 1 + W n r N 2 ,
d N 2 d t = σ 2 Φ ( N 1 N 2 ) W n r N 2 ,
N 1 Φ 1 + Φ Φ s a t ,
N 2 Φ 2 1 + Φ Φ s a t ,
S ( z ) = λ Z R ( 1 + z 2 Z R 2 ) ,
$ ( z ) = d x d y N 2 ( x , y , z ) = N 2 ( z ) . S ( z ) E 2 S ( z ) + E Φ s a t ,
$ ( z ) E 2 π w 0 2 ( 1 + Φ 0 Φ s a t ) 1 1 + z 2 Z R 2 ( 1 + Φ 0 Φ s a t ) ,
E π w 0 2 = Φ 0 .
H W H M = Z R 1 + Φ 0 Φ s a t .
N 1 S ( z ) P ( 1 1 1 + Φ s a t Φ 0 1 + z 2 Z R 2 ( 1 + Φ 0 Φ s a t ) ,
P A s i g n a l tan 1 [ ( z + 50 ) Δ ] tan 1 [ ( z 50 ) Δ ] ,

Metrics