Abstract

We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm−1. The beam profile quality (M2) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-kW peak power acousto-optically tunable thulium-doped fiber laser system

François Gutty, Arnaud Grisard, Alexandre Joly, Christian Larat, Dominique Papillon-Ruggeri, and Eric Lallier
Opt. Express 23(5) 6754-6762 (2015)

Grating tunable 4 - 14 µm GaAs optical parametric oscillator pumped at 3 µm

K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann
Opt. Express 22(4) 4131-4136 (2014)

All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal

Jarosław Sotor, Tadeusz Martynkien, Peter G. Schunemann, Paweł Mergo, Lucile Rutkowski, and Grzegorz Soboń
Opt. Express 26(9) 11756-11763 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18(6), 818–822 (2001).
    [Crossref]
  2. M. Gerhards, “High energy and narrow bandwidth mid IR nanosecond laser system,” Opt. Commun. 241(4–6), 493–497 (2004).
    [Crossref]
  3. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett. 33(15), 1699–1701 (2008).
    [Crossref] [PubMed]
  4. K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, “Grating tunable 4 – 14 μm GaAs optical parametric oscillator pumped at 3 μm,” Opt. Express 22(4), 4131–4136 (2014).
    [Crossref] [PubMed]
  5. G. Robertson, G. T. Maker, and G. P. A. Malcolm, “Broadly tunable intracavity zinc germanium phosphate optical parametric oscillator for hyperspectral imaging,” Opt. Eng. 53(6), 063106 (2014).
    [Crossref]
  6. Q. Clément, J.-M. Melkonian, J.-B. Dherbecourt, M. Raybaut, A. Grisard, E. Lallier, B. Gérard, B. Faure, G. Souhaité, and A. Godard, “Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing,” Opt. Lett. 40(12), 2676–2679 (2015).
    [Crossref] [PubMed]
  7. S. Hugger, F. Fuchs, J.-P. Jarvis, M. Kinzer, Q. K. Yang, R. Driad, R. Aidam, and J. Wagner, “Broadband-tunable External-cavity Quantum Cascade Lasers for the Spectroscopic Detection of Hazardous Substances,” SPIE Photonics West – Conference 8631, San Francisco, 2013.
  8. M. E. Morales-Rodríguez, L. R. Senesac, T. Thundat, M. K. Rafailov, and P. G. Datskos, “Standoff imaging of chemicals using IR spectroscopy,” in SPIE 8031, Micro- and Nanotechnology Sensors, Systems, and Applications III, 80312D, Orlando, 2011.
  9. J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B 108(4), 965–974 (2012).
    [Crossref]
  10. N. A. Macleod, F. Molero, and D. Weidmann, “Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry,” Opt. Express 23(2), 912–928 (2015).
    [Crossref] [PubMed]
  11. R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
    [Crossref]
  12. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
    [Crossref]
  13. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  14. L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
    [Crossref]
  15. M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
    [Crossref]
  16. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
    [Crossref] [PubMed]
  17. C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34(3), 262–264 (2009).
    [Crossref] [PubMed]
  18. G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett. 35(4), 505–507 (2010).
    [Crossref] [PubMed]
  19. Q. Clément, J.-M. Melkonian, J. Barrientos-Barria, J.-B. Dherbecourt, M. Raybaut, and A. Godard, “Tunable optical parametric amplification of a single-frequency quantum cascade laser around 8 μm in ZnGeP2.,” Opt. Lett. 38(20), 4046–4049 (2013).
    [Crossref] [PubMed]
  20. M. E. Klein, P. Gross, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser,” Opt. Lett. 28(11), 920–922 (2003).
    [Crossref] [PubMed]
  21. I. D. Lindsay, B. Adhimoolam, P. Groß, M. E. Klein, and K. -J. Boller, “110GHz rapid, continuous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser,” Opt. Express 13(4), 1234–1239 (2005).
    [Crossref] [PubMed]
  22. J. Courtois, R. Bouchendira, M. Cadoret, I. Ricciardi, S. Mosca, M. De Rosa, P. De Natale, and J.-J. Zondy, “High-speed multi-THz-range mode-hop-free tunable mid-IR laser spectrometer,” Opt. Lett. 38(11), 1972–1974 (2013).
    [Crossref] [PubMed]
  23. F. Gutty, A. Grisard, A. Joly, C. Larat, D. Papillon-Ruggeri, and E. Lallier, “Multi-kW peak power acousto-optically tunable thulium-doped fiber laser system,” Opt. Express 23(5), 6754–6762 (2015).
    [Crossref] [PubMed]
  24. L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).
  25. H. D. Tholl, F. Münzhuber, J. Kunz, M. Raab, M. Rattunde, S. Hugger, F. Gutty, A. Grisard, C. Larat, D. Papillon, M. Schwarz, E. Lallier, M. Kastek, T. Piatkowski, F. Brygo, C. Awanzino, F. Wilsenack, and A. Lorenzen, “Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents”, accepted in SPIE Security and Defense, Warsaw, 2017.

2017 (1)

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

2016 (1)

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

2015 (3)

2014 (2)

K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, “Grating tunable 4 – 14 μm GaAs optical parametric oscillator pumped at 3 μm,” Opt. Express 22(4), 4131–4136 (2014).
[Crossref] [PubMed]

G. Robertson, G. T. Maker, and G. P. A. Malcolm, “Broadly tunable intracavity zinc germanium phosphate optical parametric oscillator for hyperspectral imaging,” Opt. Eng. 53(6), 063106 (2014).
[Crossref]

2013 (2)

2012 (1)

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B 108(4), 965–974 (2012).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2005 (1)

2004 (2)

2003 (1)

2001 (2)

F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18(6), 818–822 (2001).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

1994 (1)

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

1993 (1)

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Adhimoolam, B.

Angell, M. J.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Auerbach, M.

Barrientos-Barria, J.

Becouarn, L.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Bernacki, B.

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B 108(4), 965–974 (2012).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Bloom, G.

Boller, K. -J.

Boller, K.-J.

Bortz, M. L.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

Boskovic, D.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Bouchendira, R.

Butschek, L.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Byer, R. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Cadoret, M.

Carras, M.

Caughey, T.

Clément, Q.

Courtois, J.

De Natale, P.

De Rosa, M.

Dherbecourt, J.-B.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Eckardt, R. C.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Eichhorn, M.

Emerson, R. M.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

Eyres, L. A.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

Fallnich, C.

Faure, B.

Faye, D.

Feigelson, R. S.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Fejer, M. M.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Fuchs, F.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Fujii, M.

Ganikhanov, F.

Gerard, B.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Gérard, B.

Gerhards, M.

M. Gerhards, “High energy and narrow bandwidth mid IR nanosecond laser system,” Opt. Commun. 241(4–6), 493–497 (2004).
[Crossref]

Gibbons, J. F.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

Godard, A.

Gordon, L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Grahmann, J.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Grisard, A.

Groß, P.

Gross, P.

Gutty, F.

Haertelt, M.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

Harris, J. S.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Hirth, A.

Hoyt, J. L.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

Hugger, S.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Ishizuki, H.

Jarvis, J.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Joly, A.

Kieleck, C.

Klein, M. E.

Kuo, P. S.

Lallier, E.

F. Gutty, A. Grisard, A. Joly, C. Larat, D. Papillon-Ruggeri, and E. Lallier, “Multi-kW peak power acousto-optically tunable thulium-doped fiber laser system,” Opt. Express 23(5), 6754–6762 (2015).
[Crossref] [PubMed]

Q. Clément, J.-M. Melkonian, J.-B. Dherbecourt, M. Raybaut, A. Grisard, E. Lallier, B. Gérard, B. Faure, G. Souhaité, and A. Godard, “Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing,” Opt. Lett. 40(12), 2676–2679 (2015).
[Crossref] [PubMed]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett. 35(4), 505–507 (2010).
[Crossref] [PubMed]

C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34(3), 262–264 (2009).
[Crossref] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Larat, C.

Levi, O.

Lindsay, I. D.

Macleod, N. A.

Makasyuk, I.

Maker, G. T.

G. Robertson, G. T. Maker, and G. P. A. Malcolm, “Broadly tunable intracavity zinc germanium phosphate optical parametric oscillator for hyperspectral imaging,” Opt. Eng. 53(6), 063106 (2014).
[Crossref]

Malcolm, G. P. A.

G. Robertson, G. T. Maker, and G. P. A. Malcolm, “Broadly tunable intracavity zinc germanium phosphate optical parametric oscillator for hyperspectral imaging,” Opt. Eng. 53(6), 063106 (2014).
[Crossref]

Marcadet, X.

Melkonian, J.-M.

Merten, A.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Miyazaki, M.

Molero, F.

Mosca, S.

Ostendorf, R.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Papillon-Ruggeri, D.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Phillips, M. C.

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B 108(4), 965–974 (2012).
[Crossref]

Pinguet, T. J.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Rattunde, M.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Raybaut, M.

Ricciardi, I.

Rieblinger, K.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Robertson, G.

G. Robertson, G. T. Maker, and G. P. A. Malcolm, “Broadly tunable intracavity zinc germanium phosphate optical parametric oscillator for hyperspectral imaging,” Opt. Eng. 53(6), 063106 (2014).
[Crossref]

Route, R. R.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Saikawa, J.

Schilling, C.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Schunemann, P. G.

Souhaité, G.

Suter, J. D.

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B 108(4), 965–974 (2012).
[Crossref]

Taira, T.

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Tybussek, T.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Vodopyanov, K. L.

Wagner, J.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Weidmann, D.

Wessels, P.

Woods, G. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Yang, Q.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Zondy, J.-J.

Appl. Phys. B (1)

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B 108(4), 965–974 (2012).
[Crossref]

Appl. Phys. Lett. (2)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64(23), 3107–3109 (1994).
[Crossref]

Electron. Lett. (1)

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. Gerhards, “High energy and narrow bandwidth mid IR nanosecond laser system,” Opt. Commun. 241(4–6), 493–497 (2004).
[Crossref]

Opt. Eng. (1)

G. Robertson, G. T. Maker, and G. P. A. Malcolm, “Broadly tunable intracavity zinc germanium phosphate optical parametric oscillator for hyperspectral imaging,” Opt. Eng. 53(6), 063106 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

J. Courtois, R. Bouchendira, M. Cadoret, I. Ricciardi, S. Mosca, M. De Rosa, P. De Natale, and J.-J. Zondy, “High-speed multi-THz-range mode-hop-free tunable mid-IR laser spectrometer,” Opt. Lett. 38(11), 1972–1974 (2013).
[Crossref] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34(3), 262–264 (2009).
[Crossref] [PubMed]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett. 35(4), 505–507 (2010).
[Crossref] [PubMed]

Q. Clément, J.-M. Melkonian, J. Barrientos-Barria, J.-B. Dherbecourt, M. Raybaut, and A. Godard, “Tunable optical parametric amplification of a single-frequency quantum cascade laser around 8 μm in ZnGeP2.,” Opt. Lett. 38(20), 4046–4049 (2013).
[Crossref] [PubMed]

M. E. Klein, P. Gross, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser,” Opt. Lett. 28(11), 920–922 (2003).
[Crossref] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett. 33(15), 1699–1701 (2008).
[Crossref] [PubMed]

Q. Clément, J.-M. Melkonian, J.-B. Dherbecourt, M. Raybaut, A. Grisard, E. Lallier, B. Gérard, B. Faure, G. Souhaité, and A. Godard, “Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing,” Opt. Lett. 40(12), 2676–2679 (2015).
[Crossref] [PubMed]

Photonics (1)

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Proc. SPIE (1)

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, J. Grahmann, D. Boskovic, F. Fuchs, R. Ostendorf, C. Schilling, M. Rattunde, and J. Wagner, “Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings,” Proc. SPIE 10111, 101112G–1 (2017).

Other (3)

H. D. Tholl, F. Münzhuber, J. Kunz, M. Raab, M. Rattunde, S. Hugger, F. Gutty, A. Grisard, C. Larat, D. Papillon, M. Schwarz, E. Lallier, M. Kastek, T. Piatkowski, F. Brygo, C. Awanzino, F. Wilsenack, and A. Lorenzen, “Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents”, accepted in SPIE Security and Defense, Warsaw, 2017.

S. Hugger, F. Fuchs, J.-P. Jarvis, M. Kinzer, Q. K. Yang, R. Driad, R. Aidam, and J. Wagner, “Broadband-tunable External-cavity Quantum Cascade Lasers for the Spectroscopic Detection of Hazardous Substances,” SPIE Photonics West – Conference 8631, San Francisco, 2013.

M. E. Morales-Rodríguez, L. R. Senesac, T. Thundat, M. K. Rafailov, and P. G. Datskos, “Standoff imaging of chemicals using IR spectroscopy,” in SPIE 8031, Micro- and Nanotechnology Sensors, Systems, and Applications III, 80312D, Orlando, 2011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Set-up of the tunable pulsed fiber pump system. O.C.: output coupler. PM: polarization-maintaining component.
Fig. 2
Fig. 2 Characterizations of the laser oscillator at 2 kHz repetition rate with 1.2 W launched power. (a) Laser peak power and pulse width vs. emitted wavelength. (b) Output spectrum for laser tuned at 1933 nm.
Fig. 3
Fig. 3 Amplifier output characterization for laser pumped with 1.2 W, 2 kHz repetition rate and amplifier pumped with 9 W. (a) Peak power and pulse width vs. emitted wavelength. (b) Spectrum for laser tuned at 1933 nm. Inset a temporal pulse profile for laser tuned at 1933 nm.
Fig. 4
Fig. 4 Description of the EC-QCL and OPA set-up. λ/2: zero-order half-wave plate. D: diaphragm. DM: dichroic mirror. LP: Long-Wave Pass filter above 6600 nm. Blue arrow: pump beam. Red arrow: EC-QCL beam. Green arrow: complementary signal generated in the OPA of wavelength between 2.3 and 2.6 µm. Inset left a single-shot trace of the temporal pulse profile of EC-QCL output tuned at 1060 cm-1. Inset right a single-shot trace of the temporal pulse profile of the OPA output for EC-QCL tuned at 1200 cm−1.Both temporal envelopes slightly change from pulse to pulse.
Fig. 5
Fig. 5 Output peak power and OPA gain vs. EC-QCL wavelength with EC-QCL at maximum output peak power, laser pumped with 1.2 W, amplifier pumped with 9 W and EC-QCL and pump synchronized at 2 kHz. Inset shows an image of the beam profile at the output of the crystal when EC-QCL tuned at 1144 cm−1.
Fig. 6
Fig. 6 (a) OPA output spectrum of amplified pulses for different output peak power of the EC-QCL, tuned at 1174 cm1 for laser pumped with 1.2 W, amplifier pumped with 9 W and EC-QCL and pump synchronized at 2 kHz. Blue: EC-QCL delivering 350 mW peak power. Red: EC-QCL with 270 mW peak power. Green: EC-QCL with 190 mW peak power. Cyan: EC-QCL with 120 mW peak power. Black: reference of unamplified EC-QCL with 350 mW peak power. (b). Set-up integrated in a transportable optical head (aluminum housing) and electronic controls combined in a 19-inch rack cabinet for field testing.

Metrics