Abstract

A fibre-optic strain sensor based on a gourd-shaped joint multimode fibre (MMF) sandwiched between two single-mode fibres (SMFs) is described both theoretically and experimentally. The cladding layers of the two MMFs are reshaped to form a hemisphere using an electrical arc method and spliced together, yielding the required gourd shape. The gourd-shaped section forms a Fabry-Perot cavity between the ends of two adjacent but non-contacting multimode fibres’ core. The effectiveness of the multimode interference based on the Fabry-Perot interferometer (FPI) formed within the multimode inter-fibre section is greatly improved resulting in an experimentally determined strain sensitivity of −2.60 pm/με over the range 0—1000 με. The sensing characteristics for temperature and humidity of this optical fibre strain sensor are also investigated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement

De-Wen Duan, Yun-jiang Rao, Yu-Song Hou, and Tao Zhu
Appl. Opt. 51(8) 1033-1036 (2012)

Sensitivity improvement by fusion splicing of single mode fibers with core offset

Jing Liu, D. N. Wang, and Ye Liu
Opt. Mater. Express 7(10) 3722-3730 (2017)

Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature

Ai Zhou, Boyang Qin, Zheng Zhu, Yaxun Zhang, Zhihai Liu, Jun Yang, and Libo Yuan
Opt. Lett. 39(18) 5267-5270 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).
  2. P. Wang, Y. Semenova, and G. Farrell, “Temperature dependence of macrobending loss in all-fiber bend loss edge filter,” Opt. Commun. 281(17), 4312–4316 (2008).
    [Crossref]
  3. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [Crossref] [PubMed]
  4. Y. Zhao, P. Wang, R. Lv, and Y. Yang, “Temperature Sensing Characteristics Based on Up-Taper and Single Mode–Multimode Fiber Structure,” IEEE Photonics Technol. Lett. 28(22), 2557–2560 (2016).
    [Crossref]
  5. K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
    [Crossref]
  6. D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photonics Technol. Lett. 21(7), 468–470 (2009).
    [Crossref]
  7. J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
    [Crossref]
  8. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref] [PubMed]
  9. H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
    [Crossref] [PubMed]
  10. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode–multimode–single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
    [Crossref]
  11. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36(12), 2197–2199 (2011).
    [Crossref] [PubMed]
  12. Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
    [Crossref]
  13. S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
    [Crossref]
  14. H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
    [Crossref]
  15. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  16. M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach–Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
    [Crossref]
  17. Y. Zhao, M. Chen, R. Lv, and F. Xia, “In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform,” Opt. Commun. 384, 107–110 (2017).
    [Crossref]
  18. A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell, “Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme,” Appl. Opt. 49(3), 536–541 (2010).
    [Crossref] [PubMed]
  19. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]
  20. P. Xian, G. Feng, and S. Zhou, “A Compact and Stable Temperature Sensor Based on a Gourd-Shaped Microfiber,” IEEE Photonics Technol. Lett. 28(1), 95–98 (2016).
    [Crossref]
  21. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [Crossref]
  22. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  23. C. M. Miller, Optical fiber splices and connectors: theory and methods (Marcel Dekker Inc, 1986), Vol. 10.
  24. M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems,” Opt. Lett. 31(9), 1202–1204 (2006).
    [Crossref] [PubMed]
  25. M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers,” Appl. Opt. 43(24), 4659–4666 (2004).
    [Crossref] [PubMed]
  26. E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
    [Crossref] [PubMed]
  27. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref] [PubMed]

2017 (3)

2016 (4)

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

Y. Zhao, P. Wang, R. Lv, and Y. Yang, “Temperature Sensing Characteristics Based on Up-Taper and Single Mode–Multimode Fiber Structure,” IEEE Photonics Technol. Lett. 28(22), 2557–2560 (2016).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

P. Xian, G. Feng, and S. Zhou, “A Compact and Stable Temperature Sensor Based on a Gourd-Shaped Microfiber,” IEEE Photonics Technol. Lett. 28(1), 95–98 (2016).
[Crossref]

2014 (3)

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

2012 (1)

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach–Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photonics Technol. Lett. 21(7), 468–470 (2009).
[Crossref]

2008 (2)

P. Wang, Y. Semenova, and G. Farrell, “Temperature dependence of macrobending loss in all-fiber bend loss edge filter,” Opt. Commun. 281(17), 4312–4316 (2008).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode–multimode–single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
[Crossref]

2007 (3)

2006 (2)

2004 (2)

1996 (1)

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

An, J.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

An, M.

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

Brambilla, G.

Cai, L.

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Cai, Z.

Chen, L.

Chen, M.

Y. Zhao, M. Chen, R. Lv, and F. Xia, “In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform,” Opt. Commun. 384, 107–110 (2017).
[Crossref]

Chen, Z.

Ding, M.

Dockney, M. L.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

Dong, H.

Dong, J.

Dong, X.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach–Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Fan, Y.-X.

Farrell, G.

Feng, G.

P. Xian, G. Feng, and S. Zhou, “A Compact and Stable Temperature Sensor Based on a Gourd-Shaped Microfiber,” IEEE Photonics Technol. Lett. 28(1), 95–98 (2016).
[Crossref]

Geng, T.

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

Gu, X.

Guan, H.

Han, L.

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

Han, M.

Hatta, A. M.

James, S. W.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

Jin, Y.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

Johnson, E. G.

Lewis, E.

Li, E.

Li, J.

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

Li, X.-G.

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Li, Y.

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach–Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Liang, S.

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

Lit, J. W. Y.

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photonics Technol. Lett. 21(7), 468–470 (2009).
[Crossref]

Liu, W.-K.

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photonics Technol. Lett. 21(7), 468–470 (2009).
[Crossref]

Liu, Y.

Liu, Z.

Lu, H.

Lv, R.

Y. Zhao, M. Chen, R. Lv, and F. Xia, “In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform,” Opt. Commun. 384, 107–110 (2017).
[Crossref]

Y. Zhao, P. Wang, R. Lv, and Y. Yang, “Temperature Sensing Characteristics Based on Up-Taper and Single Mode–Multimode Fiber Structure,” IEEE Photonics Technol. Lett. 28(22), 2557–2560 (2016).
[Crossref]

Ma, Y.

Mehta, A.

Meng, F.-C.

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Mohammed, W. S.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Qiao, L.

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

Qin, B.

Qiu, W.

Ren, J.

Semenova, Y.

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Sun, M.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach–Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tang, J.

Tatam, R. P.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

Tian, K.

Wang, A.

Wang, P.

Wang, Q.

Wang, W.

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

Wei, L.

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photonics Technol. Lett. 21(7), 468–470 (2009).
[Crossref]

Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
[Crossref] [PubMed]

Wu, Q.

Xia, F.

Y. Zhao, M. Chen, R. Lv, and F. Xia, “In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform,” Opt. Commun. 384, 107–110 (2017).
[Crossref]

Xian, P.

P. Xian, G. Feng, and S. Zhou, “A Compact and Stable Temperature Sensor Based on a Gourd-Shaped Microfiber,” IEEE Photonics Technol. Lett. 28(1), 95–98 (2016).
[Crossref]

Xiao, Y.

Xin, Y.

Xu, B.

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach–Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Xu, J.

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

Yan, B.

Yan, W.

Yang, F.

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

Yang, J.

Yang, W.

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

Yang, Y.

Y. Zhao, P. Wang, R. Lv, and Y. Yang, “Temperature Sensing Characteristics Based on Up-Taper and Single Mode–Multimode Fiber Structure,” IEEE Photonics Technol. Lett. 28(22), 2557–2560 (2016).
[Crossref]

Yu, C.

Yu, J.

Yuan, L.

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

Zhang, J.

Zhang, Y.

Zhao, Y.

Y. Zhao, M. Chen, R. Lv, and F. Xia, “In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform,” Opt. Commun. 384, 107–110 (2017).
[Crossref]

Y. Zhao, P. Wang, R. Lv, and Y. Yang, “Temperature Sensing Characteristics Based on Up-Taper and Single Mode–Multimode Fiber Structure,” IEEE Photonics Technol. Lett. 28(22), 2557–2560 (2016).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Zhou, A.

Zhou, D.-P.

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photonics Technol. Lett. 21(7), 468–470 (2009).
[Crossref]

Zhou, J.

Zhou, S.

P. Xian, G. Feng, and S. Zhou, “A Compact and Stable Temperature Sensor Based on a Gourd-Shaped Microfiber,” IEEE Photonics Technol. Lett. 28(1), 95–98 (2016).
[Crossref]

Zhu, H.

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

Zhu, W.

Zhu, Z.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Electron. Lett. (1)

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

IEEE Photonics J. (1)

L. Han, S. Liang, J. Xu, L. Qiao, H. Zhu, and W. Wang, “Simultaneous Wavelength-and Mode-Division (De) multiplexing for High-Capacity On-Chip Data Transmission Link,” IEEE Photonics J. 8, 1–10 (2016).

IEEE Photonics Technol. Lett. (4)

Y. Zhao, P. Wang, R. Lv, and Y. Yang, “Temperature Sensing Characteristics Based on Up-Taper and Single Mode–Multimode Fiber Structure,” IEEE Photonics Technol. Lett. 28(22), 2557–2560 (2016).
[Crossref]

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photonics Technol. Lett. 21(7), 468–470 (2009).
[Crossref]

H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, and L. Yuan, “Combining two types of gratings for simultaneous strain and temperature measurement,” IEEE Photonics Technol. Lett. 28(4), 477–480 (2016).
[Crossref]

P. Xian, G. Feng, and S. Zhou, “A Compact and Stable Temperature Sensor Based on a Gourd-Shaped Microfiber,” IEEE Photonics Technol. Lett. 28(1), 95–98 (2016).
[Crossref]

IEEE Sens. J. (1)

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (3)

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach–Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Y. Zhao, M. Chen, R. Lv, and F. Xia, “In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform,” Opt. Commun. 384, 107–110 (2017).
[Crossref]

P. Wang, Y. Semenova, and G. Farrell, “Temperature dependence of macrobending loss in all-fiber bend loss edge filter,” Opt. Commun. 281(17), 4312–4316 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Sens. Actuators B Chem. (1)

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Other (1)

C. M. Miller, Optical fiber splices and connectors: theory and methods (Marcel Dekker Inc, 1986), Vol. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of a gourd-shaped spliced SMS fibre structure.

Fig. 2
Fig. 2

Optical microscopic image of the gourd-shaped spliced MMFs (a) transmission light; (b) reflected light.

Fig. 3
Fig. 3

Schematic diagram of the light transmitted in the SGMS fibre structure.

Fig. 4
Fig. 4

Simulated optical field intensity distribution within an SGMS fibre structure at a wavelength of 1550 nm using a BPM.

Fig. 5
Fig. 5

Experimental setup for the strain measurement using the SGMS fibre structure.

Fig. 6
Fig. 6

Transmission spectrum evolution when the applied strain changed.

Fig. 7
Fig. 7

Dip shift as a function of strain. The red line represents wavelength-strain fitting, the blue line represents intensity-strain fitting.

Fig. 8
Fig. 8

(a) Transmission spectrum evolution for the standard SMS structure when applied strain is changed; (b) Wavelength shift of a standard SMS fibre structure (triangle points fitted by black line) and the proposed gourd-shaped SMS fibre structure (star points fitted by red line) as a funtion of different strain values.

Fig. 9
Fig. 9

Schematic diagram of the temperature and humidity measurement setup.

Fig. 10
Fig. 10

Transmission spectrum evolution when the surrounding temperature changed.

Fig. 11
Fig. 11

Dip shift as a function of temperature. The red line represents wavelength-temperature fitting, the blue line represent intensity-temperature fitting.

Fig. 12
Fig. 12

The wavelength-strain sensitivities of SGMS fibre structure at different temperature.

Fig. 13
Fig. 13

The temperature induced strain error as a function of temperature.

Fig. 14
Fig. 14

Dip shift response the surrounding relative humidity change.

Tables (1)

Tables Icon

Table 1 Comparison of Different Strain Sensors Developed to Data

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(r,z)= m=1 M c m F m (r)exp(i β m z)
E total = m=1 M p m F m (r)exp(j β m z) e ^ m = m=1 M | p m | exp(j φ pm ) F m (r)exp(j β m z) e ^ m
E'= m=1 M p m r m (L) F m (r)exp(j β m z) e ^ m
Δε= ΔL L
[ Δε ΔT ]= 1 D [ K TΔP K TΔλ K εΔP K εΔλ ][ Δλ ΔP ]

Metrics