Abstract

We present experimental measurements illustrating the power-dependent coherence evolution for supercontinuum generated in highly nonlinear SF6 photonic crystal fibers. The measurements were performed for fiber lengths close to and much longer than the soliton fission length. Simulations of the spectral evolution were also carried out to accompany the experimental observation. Many parameters were estimated by matching the simulated and the measured evolution. Both the measured and the simulated coherence evolution confirm the association between coherence degradation and soliton fission.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally smooth supercontinuum from 350 nm to 3 µm in sub-centimeter lengths of soft-glass photonic crystal fibers.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell
Opt. Express 14(11) 4928-4934 (2006)

Supercontinuum generation and soliton timing jitter in SF6 soft glass photonic crystal fibers

Anatoly Efimov and Antoinette J. Taylor
Opt. Express 16(8) 5942-5953 (2008)

Experimental measurement of supercontinuum coherence in tellurite photonic crystal fibers

Yuji Zhang, Daniel J. Kane, and Fiorenzo G. Omenetto
Opt. Lett. 42(23) 4857-4860 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
    [Crossref] [PubMed]
  3. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
    [Crossref] [PubMed]
  4. V. V. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
    [Crossref] [PubMed]
  5. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
    [Crossref] [PubMed]
  6. J. T. Moeser, N. A. Wolchover, J. C. Knight, and F. G. Omenetto, “Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber,” Opt. Lett. 32(8), 952–954 (2007).
    [Crossref] [PubMed]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [Crossref] [PubMed]
  8. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  9. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
    [Crossref] [PubMed]
  10. F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12(2), 347–353 (2004).
    [Crossref] [PubMed]
  11. J. Nicholson and M. Yan, “Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm,” Opt. Express 12(4), 679–688 (2004).
    [Crossref] [PubMed]
  12. S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2), 265–269 (2005).
    [Crossref]
  13. I. Zeylikovich, V. Kartazaev, and R. R. Alfano, “Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,” J. Opt. Soc. Am. B 22(7), 1453–1460 (2005).
    [Crossref]
  14. D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
    [Crossref] [PubMed]
  15. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  16. S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
    [Crossref]
  17. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
    [Crossref] [PubMed]
  18. M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, “Experimental Measurement of the Second-Order Coherence of Supercontinuum,” Phys. Rev. Lett. 116(24), 243901 (2016).
    [Crossref] [PubMed]
  19. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  20. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010).
  21. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
    [Crossref] [PubMed]

2016 (1)

M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, “Experimental Measurement of the Second-Order Coherence of Supercontinuum,” Phys. Rev. Lett. 116(24), 243901 (2016).
[Crossref] [PubMed]

2012 (3)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2007 (3)

2006 (2)

2005 (2)

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2), 265–269 (2005).
[Crossref]

I. Zeylikovich, V. Kartazaev, and R. R. Alfano, “Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,” J. Opt. Soc. Am. B 22(7), 1453–1460 (2005).
[Crossref]

2004 (2)

2003 (3)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

2002 (2)

Abouraddy, A. F.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Alfano, R. R.

Bang, O.

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[Crossref]

Bartelt, H.

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

Bosman, G. W.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Dias, F.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Dudley, J.

Dudley, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Efimov, A.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
[Crossref] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

Fateev, N. V.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2), 265–269 (2005).
[Crossref]

Friberg, A. T.

M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, “Experimental Measurement of the Second-Order Coherence of Supercontinuum,” Phys. Rev. Lett. 116(24), 243901 (2016).
[Crossref] [PubMed]

Frosz, M. H.

Genty, G.

M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, “Experimental Measurement of the Second-Order Coherence of Supercontinuum,” Phys. Rev. Lett. 116(24), 243901 (2016).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

George, A.

George, A. K.

Giessen, H.

Gu, X.

Hartung, A.

Heidt, A. M.

Herrmann, J.

Husakou, A.

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Joly, N. Y.

Kartazaev, V.

Kimmel, M.

Knight, J.

Knight, J. C.

Knox, W.

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2), 265–269 (2005).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Krok, P.

Kudlinski, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2), 265–269 (2005).
[Crossref]

Kumar, V. V.

Kumar, V. V. R. K.

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Larger, L.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Lu, F.

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Moeser, J. T.

Mussot, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Närhi, M.

M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, “Experimental Measurement of the Second-Order Coherence of Supercontinuum,” Phys. Rev. Lett. 116(24), 243901 (2016).
[Crossref] [PubMed]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Nicholson, J.

Omenetto, F.

Omenetto, F. G.

Pricking, S.

Reeves, W.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

Rohwer, E. G.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Ross, M.

Russell, P.

Russell, P. St. J.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
[Crossref] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

Schwoerer, H.

Shreenath, A.

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

Smirnov, S. V.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2), 265–269 (2005).
[Crossref]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sørensen, S. T.

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[Crossref]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Stolyarov, A. M.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Sylvestre, T.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Tao, G.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Taylor, A.

Taylor, A. J.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
[Crossref] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

Teipel, J.

Trebino, R.

Türke, D.

Turunen, J.

M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, “Experimental Measurement of the Second-Order Coherence of Supercontinuum,” Phys. Rev. Lett. 116(24), 243901 (2016).
[Crossref] [PubMed]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Wehner, M. R.

Wetzel, B.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[Crossref]

Windeler, R.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Wolchover, N. A.

Yan, M.

Zeylikovich, I.

Appl. Phys. B (1)

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2), 265–269 (2005).
[Crossref]

Int. J. Appl. Glass Sci. (1)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (2)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[Crossref]

Opt. Express (8)

D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
[Crossref] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[Crossref] [PubMed]

F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12(2), 347–353 (2004).
[Crossref] [PubMed]

J. Nicholson and M. Yan, “Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm,” Opt. Express 12(4), 679–688 (2004).
[Crossref] [PubMed]

V. V. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
[Crossref] [PubMed]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
[Crossref] [PubMed]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, “Experimental Measurement of the Second-Order Coherence of Supercontinuum,” Phys. Rev. Lett. 116(24), 243901 (2016).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Other (1)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for the measurement of the coherence between successive SC pulses. A “long-arm” interferometer generating a one pulse delay allows successive SC pulses to overlap temporally. The inset is the scanning electron microscopy (SEM) image of the facet of the SF6 PCF used in the experiment. The core diameter is 3.6 µm. BS = beam splitter; OPO = optical parametric oscillator; and OSA = optical spectrum analyzer.
Fig. 2
Fig. 2 Spectral evolution (a)–(c) and coherence evolution (d)–(f) of SC generated in three different lengths of SF6 PCFs (10.5-cm, 4.7-mm, and 3.9-mm). S1–S3 in (a) mark solitons. CR in (a) and (b) marks Cherenkov radiation. The spectral evolution is calibrated such that the maximum intensity is 0 dB. (g)–(i) are representative spectra.
Fig. 3
Fig. 3 (a) Measured and (b) simulated spectral evolution using three different lengths of SF6 PCFs. The simulation plots have black lines at 1700 nm to help visual comparison between experiment and simulation. Comparison between measurement and simulation shows agreement in the broadening trends, in the soliton fission powers, and in the emergence of Cherenkov radiation.
Fig. 4
Fig. 4 Simulated coherence of SC generated in three different lengths of SF6 PCFs, in comparison with the experimental results. Column (a): three plots of measured spectral evolution using different fiber lengths. Column (b): measured coherence evolution. Column (c): simulated spectral evolution. Column (d): simulated coherence evolution. The simulation plots have black lines at 1700 nm to help visual comparison with the experimental results. In the experiment, radiation of relative intensity lower than about −40 dB was not measurable due to the sensitivity limitation; and in the simulations this part of radiation is also ignored. (e) and (f): spectrally-averaged coherence depending on the average SC power. In the simulations, shot noise and 5% pulse-to-pulse power fluctuation were added in the pump.
Fig. 5
Fig. 5 (a) Measured coherence evolution for the 3.9-mm-fiber case. (b) Corresponding simulated coherence with different (independently-generated) noise at each power, including shot noise and the pulse-to-pulse power fluctuation in the pump (ΔP). (c) Simulation results by using the same shot noise at all powers (the set of ΔP’s is still different at each power). (d) and (e): Two independent runs of simulation each using the same set of ΔP’s at all powers (shot noise is still different at each power). (d) and (e) each uses a same set of ΔP’s (as in the histograms), yielding no fluctuation in coherence, respectively. But (d) and (e) have different coherence between each other, since they use different sets of ΔP’s. These results show that random ΔP can be the cause of the coherence fluctuation.
Fig. 6
Fig. 6 Simulated pulse-to-pulse stability of spectral intensity (–Cv) and coherence. (a) Power-dependent evolution of –Cv, simulated with the parameters for the 4.7-mm SF6 PCF case. This can be compared with the 4.7-mm coherence evolution in Fig. 4(d). Similar to Fig. 4(d), radiation of relative intensity lower than about −40 dB is ignored. (b) The spectral evolution, (c) the evolution of coherence |g|, and (d) the evolution of –Cv depending on the propagation length, simulated using a 5-cm of same SF6 PCF and an average power of 70 mW. (e) Averaged coherence |g| (blue), phase stability |gPHASE| (red), and –Cv (green) depending on the propagation length. The soliton fission length (4.8 mm) is marked with a dashed line. (f) Distribution of SC power as a function of |g| and –Cv, (g) distribution of SC power as a function of |gPHASE| and –Cv. (f) and (g) concern the radiation at all the lengths in (b). (g) shows low correlation between –Cv and |gPHASE|. (f) shows similar trends except for a forbidden area to the right-bottom of the dash curve, because –Cv is coupled in |g|.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V(λ)= 2 [ I 1 (λ) I 2 (λ) ] 1/2 I 1 (λ)+ I 2 (λ) | g 12 (1) (λ) |
| g 12 (1) (P) | = λ | g 12 (1) (λ,P) | I 1 (λ,P) λ I 1 (λ)
| g 12 (λ) |= | E m * (λ) E n (λ) mn | [ | E m (λ) | 2 m | E n (λ) | 2 n ] 1/2 = | mn E m * (λ) E n (λ) / [ N(N1) ] | m | E m (λ) | 2 /N
| g 12_PHASE (λ) |= | mn exp{ i[ arg( E m (λ) )arg( E n (λ) ) ] } |/ [ N(N1) ]
C v (λ)= σ I (λ)/ I m (λ) = ( I (λ) m I m (λ) ) 2 / I m (λ)

Metrics